Faculty Opinions recommendation of Adaptive divergence in pigment composition promotes phytoplankton biodiversity.

Author(s):  
Mathew Leibold
Nature ◽  
2004 ◽  
Vol 432 (7013) ◽  
pp. 104-107 ◽  
Author(s):  
Maayke Stomp ◽  
Jef Huisman ◽  
Floris de Jongh ◽  
Annelies J. Veraart ◽  
Daan Gerla ◽  
...  

Evolution ◽  
2006 ◽  
Vol 60 (4) ◽  
pp. 801 ◽  
Author(s):  
Kevin J. Parsons ◽  
Beren W. Robinson

2002 ◽  
Vol 4 (3) ◽  
pp. 55-64
Author(s):  
Svetlana I. Los' ◽  
A. F. Tereshchenko ◽  
R. N. Fomishina ◽  
E. F. Dovbysh ◽  
E. K. Zolotareva
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 435
Author(s):  
Thijs M. P. Bal ◽  
Alejandro Llanos-Garrido ◽  
Anurag Chaturvedi ◽  
Io Verdonck ◽  
Bart Hellemans ◽  
...  

There is a general and solid theoretical framework to explain how the interplay between natural selection and gene flow affects local adaptation. Yet, to what extent coexisting closely related species evolve collectively or show distinctive evolutionary responses remains a fundamental question. To address this, we studied the population genetic structure and morphological differentiation of sympatric three-spined and nine-spined stickleback. We conducted genotyping-by-sequencing and morphological trait characterisation using 24 individuals of each species from four lowland brackish water (LBW), four lowland freshwater (LFW) and three upland freshwater (UFW) sites in Belgium and the Netherlands. This combination of sites allowed us to contrast populations from isolated but environmentally similar locations (LFW vs. UFW), isolated but environmentally heterogeneous locations (LBW vs. UFW), and well-connected but environmentally heterogenous locations (LBW vs. LFW). Overall, both species showed comparable levels of genetic diversity and neutral genetic differentiation. However, for all three spatial scales, signatures of morphological and genomic adaptive divergence were substantially stronger among populations of the three-spined stickleback than among populations of the nine-spined stickleback. Furthermore, most outlier SNPs in the two species were associated with local freshwater sites. The few outlier SNPs that were associated with the split between brackish water and freshwater populations were located on one linkage group in three-spined stickleback and two linkage groups in nine-spined stickleback. We conclude that while both species show congruent evolutionary and genomic patterns of divergent selection, both species differ in the magnitude of their response to selection regardless of the geographical and environmental context.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 723-733 ◽  
Author(s):  
Marianne Barrier ◽  
Carlos D Bustamante ◽  
Jiaye Yu ◽  
Michael D Purugganan

Abstract Genes that have undergone positive or diversifying selection are likely to be associated with adaptive divergence between species. One indicator of adaptive selection at the molecular level is an excess of amino acid replacement fixed differences per replacement site relative to the number of synonymous fixed differences per synonymous site (ω = Ka/Ks). We used an evolutionary expressed sequence tag (EST) approach to estimate the distribution of ω among 304 orthologous loci between Arabidopsis thaliana and A. lyrata to identify genes potentially involved in the adaptive divergence between these two Brassicaceae species. We find that 14 of 304 genes (∼5%) have an estimated ω > 1 and are candidates for genes with increased selection intensities. Molecular population genetic analyses of 6 of these rapidly evolving protein loci indicate that, despite their high levels of between-species nonsynonymous divergence, these genes do not have elevated levels of intraspecific replacement polymorphisms compared to previously studied genes. A hierarchical Bayesian analysis of protein-coding region evolution within and between species also indicates that the selection intensities of these genes are elevated compared to previously studied A. thaliana nuclear loci.


Sign in / Sign up

Export Citation Format

Share Document