plastic responses
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 96)

H-INDEX

37
(FIVE YEARS 7)

NeoBiota ◽  
2021 ◽  
Vol 70 ◽  
pp. 69-86
Author(s):  
Martina Muraro ◽  
Samuele Romagnoli ◽  
Benedetta Barzaghi ◽  
Mattia Falaschi ◽  
Raoul Manenti ◽  
...  

Invasive predators can strongly affect native populations. If alien predator pressure is strong enough, it can induce anti-predator responses, including phenotypic plasticity of exposed individuals and local adaptations of impacted populations. Furthermore, maternal investment is an additional pathway that could provide resources and improve performance in the presence of alien predators. We investigated the potential responses to an alien predator crayfish (Procambarus clarkii) in a threatened frog (Rana latastei) by combining field observations with laboratory measurements of embryo development rate, to assess the importance of parental investment, origin and exposure to the crayfish cues. We detected a strong variation in parental investment amongst frog populations, but this variation was not related to the invasion status of the site of origin, suggesting that mothers did not modulate parental investment in relation to the presence of alien predators. However, cues of the invasive crayfish elicited plastic responses in clutches and tadpoles development: embryos developed faster when exposed to the predator. Furthermore, embryos from invaded sites reached Gosner’s development stage 25 faster than those from non-invaded sites. This ontogenetic shift can be interpreted as a local adaptation to the alien predator and suggests that frogs are able to recognise the predatory risk. If these plastic responses and local adaptation are effective escape strategies against the invasive predator, they may improve the persistence of native frog populations.


2021 ◽  
Author(s):  
Benjamin S. Walsh ◽  
Steven R. Parratt ◽  
Natasha L. M. Mannion ◽  
Rhonda R. Snook ◽  
Amanda Bretman ◽  
...  

2021 ◽  
Author(s):  
Grant E. Haines ◽  
Louis Moisan ◽  
Alison M. Derry ◽  
Andrew P. Hendry

In nature, populations are subjected to a wide variety of environmental conditions that affect fitness and induce adaptive or plastic responses in traits, resulting in phenotypic divergence between populations. The dimensionality of that divergence, however, remains contentious. At the extremes, some contend that populations diverge along a single axis of trait covariance with greatest availability of heritable variation, even if this does not lead a population directly to its fitness optimum. Those at the other extreme argue that selection can push populations towards their fitness optima along multiple phenotype axes simultaneously, resulting in divergence in numerous dimensions. Here, we address this debate using populations of threespine stickleback (Gasterosteus aculeatus) in the Cook Inlet region of southern Alaska from lakes with contrasting ecological conditions. We calculated effective dimensionality of divergence in several trait suites (defensive, swimming, and trophic) thought to be under correlated selection pressures, as well as across all traits. We also tested for integration among the trait suites and between each trait suite and the environment. We found that populations in the Cook Inlet radiation exhibit dimensionality of phenotype high enough to preclude a single axis of divergence.


2021 ◽  
Vol 8 ◽  
Author(s):  
Naim M. Bautista ◽  
Amélie Crespel

The current and projected impacts of climate change are shaped by unprecedented rates of change in environmental conditions. These changes likely mismatch the existing coping capacities of organisms within-generations and impose challenges for population resilience across generations. To better understand the impacts of projected scenarios of climate change on organismal fitness and population maintenance, it is crucial to consider and integrate the proximate sources of variability of plastic and adaptive responses to environmental change in future empirical approaches. Here we explore the implications of considering: (a) the variability in different time-scale events of climate change; (b) the variability in plastic responses from embryonic to adult developmental stages; (c) the importance of considering the species life-history traits; and (d) the influence of trans-generational effects for individual survival and population maintenance. Finally, we posit a list of future challenges with questions and approaches that will help to elucidate knowledge gaps, to better inform conservation and management actions in preserving ecosystems and biodiversity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gyutae Kim ◽  
Kyu-Sung Kim

AbstractGravity alteration is one of the critical environmental factors in the space, causing various abnormal behaviors related with the malfunctioned vestibular system. Due to the high plastic responses in the central vestibular system, the behavioral failures were resolved in a short period of time (in approx. 72 h). However, the plastic neurotransmission underlying the functional recovery is still elusive. To understand the neurotransmitter-induced plasticity under hypergravity, the extracellular single neuronal recording and the immunohistochemistry were conducted in the vestibular nucleus (VN). The animals were grouped as control, 24-h, 72-h, and 15-day exposing to 4G-hypergravity, and each group had two subgroups based on the origins of neuronal responses, such as canal and otolith. The averaged firing rates in VN showed no significant difference in the subgroups (canal-related: p > 0.105, otolith-related: p > 0.138). Meanwhile, the number of NMDAr was significantly changed by the exposing duration to hypergravity. The NMDAr decreased in 24 h (p = 1.048 × 10–9), and it was retrieved in 72 h and 15 days (p < 4.245 × 10–5). Apparently, the reduction and the retrieval in the number of NMDAr were synchronized with the generation and recovery of the abnormal behaviors. Thus, the plasticity to resolve the hypergravity-induced malfunctional behaviors was conducted by regulating the number of NMDAr.


2021 ◽  
Vol 118 (35) ◽  
pp. e2100765118 ◽  
Author(s):  
Jayna L. DeVore ◽  
Michael R. Crossland ◽  
Richard Shine ◽  
Simon Ducatez

Biotic conflict can create evolutionary arms races, in which innovation in one group increases selective pressure on another, such that organisms must constantly adapt to maintain the same level of fitness. In some cases, this process is driven by conflict among members of the same species. Intraspecific conflict can be an especially important selective force in high-density invasive populations, which may favor the evolution of strategies for outcompeting or eliminating conspecifics. Cannibalism is one such strategy; by killing and consuming their intraspecific competitors, cannibals enhance their own performance. Cannibalistic behaviors may therefore be favored in invasive populations. Here, we show that cane toad tadpoles (Rhinella marina) from invasive Australian populations have evolved an increased propensity to cannibalize younger conspecifics as well as a unique adaptation to cannibalism—a strong attraction to vulnerable hatchlings—that is absent in the native range. In response, vulnerable conspecifics from invasive populations have evolved both stronger constitutive defenses and greater cannibal-induced plastic responses than their native range counterparts (i.e., rapid prefeeding development and inducible developmental acceleration). These inducible defenses are costly, incurring performance reductions during the subsequent life stage, explaining why plasticity is limited in native populations where hatchlings are not targeted by cannibalistic tadpoles. These results demonstrate the importance of intraspecific conflict in driving rapid evolution, highlight how plasticity can facilitate adaptation following shifts in selective pressure, and show that evolutionary processes can produce mechanisms that regulate invasive populations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jesse R. Conklin ◽  
Simeon Lisovski ◽  
Phil F. Battley

AbstractGlobally, bird migration is occurring earlier in the year, consistent with climate-related changes in breeding resources. Although often attributed to phenotypic plasticity, there is no clear demonstration of long-term population advancement in avian migration through individual plasticity. Using direct observations of bar-tailed godwits (Limosa lapponica) departing New Zealand on a 16,000-km journey to Alaska, we show that migration advanced by six days during 2008–2020, and that within-individual advancement was sufficient to explain this population-level change. However, in individuals tracked for the entire migration (50 total tracks of 36 individuals), earlier departure did not lead to earlier arrival or breeding in Alaska, due to prolonged stopovers in Asia. Moreover, changes in breeding-site phenology varied across Alaska, but were not reflected in within-population differences in advancement of migratory departure. We demonstrate that plastic responses can drive population-level changes in timing of long-distance migration, but also that behavioral and environmental constraints en route may yet limit adaptive responses to global change.


Ecology ◽  
2021 ◽  
Author(s):  
Joann R. Jeplawy ◽  
Hillary F. Cooper ◽  
Jane Marks ◽  
Richard L. Lindroth ◽  
Morgan I. Andrews ◽  
...  

2021 ◽  
Author(s):  
Shu Wang ◽  
Ragan M. Callaway

Abstract Aims Temporally heterogeneous environments have crucial influences on plant survival and growth, leading to greater variations in plasticity, but direct experimental evidence is rare. Our objective was to investigate how early experience with temporally heterogeneous water conditions may affect the subsequent performance and plasticity of plants in response to water availability.Methods We subjected eight plant species from xeric, mesic or hydric habitats, four exotic and four native to North America, to initial exposure to either an alternating drought and inundation treatment (Ehet, heterogeneous experience) or a consistently moderate water supply (Ehom, homogeneous experience), and to a second round of drought, moderate watering or inundation treatments.Results Compared to Ehom, Ehet increased the final total mass across all species, but did not affect mortality. For species in groups, Ehet relative to Ehom decreased the initial total mass of native species, but increased the mass of exotic species, but natives had greater late growth than exotics after Ehet. Ehet also increased the total mass and late growth of mesic species more than xeric and hydric species.Conclusions Our findings suggest that previous exposure to temporal heterogeneity in water supply may be not beneficial immediately, but can be beneficial for plant late growth and plastic responses under water stress. Species from different habitats, and exotics vs. natives showed contrasting abilities to exploit such benefits from early heterogeneous experience, regardless of their final performance. This revealed the importance of modulating future plastic responses, or “metaplasticity”.


2021 ◽  
Author(s):  
Fonti Kar ◽  
Shinichi Nakagawa ◽  
Daniel W.A. Noble

Phenotypic plasticity is an important mechanism that allows populations to adjust to changing environments. Plastic responses induced by early life experiences can have lasting impacts on how individuals respond to environmental variation later in life (i.e., reversible plasticity). Developmental environments can also influence repeatability of plastic responses thereby altering the capacity for reaction norms to respond to selection. Here, we compared metabolic thermal reaction norms in lizards (Lampropholis delicata) that were incubated at two developmental temperatures (ncold = 26, nhot = 25). We repeatedly measured individual reaction norms across six acute temperatures 10 times over ~3.5 months (nobs = 3,818) to estimate the repeatability of average metabolic rate (intercept) and thermal plasticity (slope). The intercept and the slope of the population-level thermal reaction norm did not change with developmental temperatures. Repeatability of average metabolic rate was, on average, 10% lower in hot incubated lizards and was stable across acute temperatures. The slope of the reaction norm was moderately repeatable (R = 0.44, 95% CI = 0.035 – 0.93) suggesting that individual metabolic rate changed consistently with acute temperature, although credible intervals were quite broad. Importantly, reaction norm repeatability did not depend on early developmental temperature. Our work implies that thermal plasticity has the capacity to evolve, despite there being less consistent variation in metabolic rate under hot environments. This capacity for thermal plasticity to evolve will be increasingly more important for terrestrial ectotherms living in changing climate.


Sign in / Sign up

Export Citation Format

Share Document