Faculty Opinions recommendation of Allelic segregation and independent assortment in T. brucei crosses: proof that the genetic system is Mendelian and involves meiosis.

Author(s):  
Wendy Gibson
2005 ◽  
Vol 143 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Annette MacLeod ◽  
Alison Tweedie ◽  
Sarah McLellan ◽  
Sonya Taylor ◽  
Anneli Cooper ◽  
...  

Parasitology ◽  
1990 ◽  
Vol 101 (3) ◽  
pp. 377-386 ◽  
Author(s):  
C. M. R. Turner ◽  
J. Sternberg ◽  
N. Buchanan ◽  
E. Smith ◽  
G. Hide ◽  
...  

SUMMARYAll pairwise combinations of three cloned stocks of Trypanosoma brucei (STIB 247L, STIB 386AA and TREU 927/4) were co-transmitted through tsetse flies (Glossina morsitans) and screened for the production of hybrid trypanosomes. Clones of metacyclic and bloodstream trypanosomes from flies harbouring mature infections containing hybrid trypanosomes were established and screened for several isoenzyme and restriction fragment length polymorphisms. For each of the three combinations of parents, some progeny clones were observed to be of a phenotype and genotype indicating that genetic exchange had occurred during development of the trypanosomes in flies. These hybrid clones shared three salient features: (1) where the parents were homozygous variants the progeny were heterozygous, (2) where one of the parents was heterozygous, allelic segregation was observed and (3) the progeny clones were shown to be recombinant when two or more markers for which one of the parents was heterozygous were examined. These results are consistent with the progeny being an F1 in a diploid mendelian genetic system involving meiosis and syngamy. Our observations show that all possible combinations of the three stocks may undergo genetic exchange. A marker analysis of a series of clones each derived from single metacyclic trypanosomes showed that individual flies transmit a mixture of trypanosome genotypes corresponding to F1 progeny and to parental types, indicating that genetic exchange was a non-obligatory event in the life-cycle of the trypanosome. In addition, a preliminary analysis of the phenotype of procyclic stage trypanosomes derived from flies infected with two stocks, indicates that genetic exchange is unlikely to occur at this stage.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 661-668
Author(s):  
Mandy Kim ◽  
Erika Wolff ◽  
Tiffany Huang ◽  
Lilit Garibyan ◽  
Ashlee M Earl ◽  
...  

Abstract We have applied a genetic system for analyzing mutations in Escherichia coli to Deinococcus radiodurans, an extremeophile with an astonishingly high resistance to UV- and ionizing-radiation-induced mutagenesis. Taking advantage of the conservation of the β-subunit of RNA polymerase among most prokaryotes, we derived again in D. radiodurans the rpoB/Rif r system that we developed in E. coli to monitor base substitutions, defining 33 base change substitutions at 22 different base pairs. We sequenced >250 mutations leading to Rif r in D. radiodurans derived spontaneously in wild-type and uvrD (mismatch-repair-deficient) backgrounds and after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and 5-azacytidine (5AZ). The specificities of NTG and 5AZ in D. radiodurans are the same as those found for E. coli and other organisms. There are prominent base substitution hotspots in rpoB in both D. radiodurans and E. coli. In several cases these are at different points in each organism, even though the DNA sequences surrounding the hotspots and their corresponding sites are very similar in both D. radiodurans and E. coli. In one case the hotspots occur at the same site in both organisms.


2021 ◽  
Vol 89 (3) ◽  
pp. 127-133 ◽  
Author(s):  
Aaron D. Goldman ◽  
Betul Kacar

AbstractThe RNA World is one of the most widely accepted hypotheses explaining the origin of the genetic system used by all organisms today. It proposes that the tripartite system of DNA, RNA, and proteins was preceded by one consisting solely of RNA, which both stored genetic information and performed the molecular functions encoded by that genetic information. Current research into a potential RNA World revolves around the catalytic properties of RNA-based enzymes, or ribozymes. Well before the discovery of ribozymes, Harold White proposed that evidence for a precursor RNA world could be found within modern proteins in the form of coenzymes, the majority of which contain nucleobases or nucleoside moieties, such as Coenzyme A and S-adenosyl methionine, or are themselves nucleotides, such as ATP and NADH (a dinucleotide). These coenzymes, White suggested, had been the catalytic active sites of ancient ribozymes, which transitioned to their current forms after the surrounding ribozyme scaffolds had been replaced by protein apoenzymes during the evolution of translation. Since its proposal four decades ago, this groundbreaking hypothesis has garnered support from several different research disciplines and motivated similar hypotheses about other classes of cofactors, most notably iron-sulfur cluster cofactors as remnants of the geochemical setting of the origin of life. Evidence from prebiotic geochemistry, ribozyme biochemistry, and evolutionary biology, increasingly supports these hypotheses. Certain coenzymes and cofactors may bridge modern biology with the past and can thus provide insights into the elusive and poorly-recorded period of the origin and early evolution of life.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1829-1832 ◽  
Author(s):  
David Francis

Abstract Analysis of Dictyostelium development and cell biology has suffered from the lack of an ordinary genetic system whereby genes can be arranged in new combinations. Genetic exchange between two long ignored strains, A2Cycr and WS205 is here reexamined. Alleles which differ in size or restriction sites between these two strains were found for seven genes. Six of these are in two clusters on chromosome 2. Frequencies of recombinant progeny indicate that the genetic map of the two mating strains is colinear with the physical map recently worked out for the standard nonsexual strain, NC4. The rate of recombination is high, about 0.1% per kilobase in three different regions of chromosome 2. This value is comparable to rates found in yeast, and will permit fine dissection of the genome.


Genetics ◽  
1984 ◽  
Vol 106 (1) ◽  
pp. 139-152
Author(s):  
Kermit Ritland

ABSTRACT Allelic segregation at a single locus among offspring derived from matings, including those between inbred relatives, is a combination of two patterns, corresponding to self-fertilization and random outcrossing. The proportion of effective self-fertilization is termed the "effective selfing rate," and it is specified with identity coefficients. The description of the offspring genotypic distribution for a population with mating among relatives requires a set of three independent parameters of genetic and mating structure. One such set is the inbreeding coefficient of parents, the coefficient of kinship between mates and the effective selfing rate. The model used to derive the effective selfing rate distinguishes between the effective selfing rates of inbred vs. outbred parents; the mixed mating model does not distinguish between these two rates. As a result, the mixed mating model usually gives biased estimates of effective selfing, if there is mating among inbred relatives. The procedure for estimation of effective selfing, based upon progeny array data distributed according to the "effective selfing model," is presented, and an example is given.


1993 ◽  
Vol 106 (3) ◽  
pp. 253-258 ◽  
Author(s):  
Chit Laa Poh ◽  
Jill M.L. Tham
Keyword(s):  

2005 ◽  
Vol 23 (4) ◽  
pp. 453-456 ◽  
Author(s):  
Peng Gong ◽  
Matthew J Epton ◽  
Guoliang Fu ◽  
Sarah Scaife ◽  
Alexandra Hiscox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document