scholarly journals Faculty Opinions recommendation of Transcription switches for protoxylem and metaxylem vessel formation.

Author(s):  
Julin Maloof
2021 ◽  
Vol 22 (6) ◽  
pp. 2804
Author(s):  
Yasuo Yoshitomi ◽  
Takayuki Ikeda ◽  
Hidehito Saito-Takatsuji ◽  
Hideto Yonekura

Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.


IAWA Journal ◽  
1996 ◽  
Vol 17 (4) ◽  
pp. 431-444 ◽  
Author(s):  
Mitsuo Suzuki ◽  
Kiyotsugu Yoda ◽  
Hitoshi Suzuki

Initiation of vessel formation and vessel maturation indicated by secondary wall deposition have been compared in eleven deciduous broadleaved tree species. In ring-porous species the first vessel element formation in the current growth ring was initiated two to six weeks prior to the onset of leaf expansion, and secondary wall deposition on the vessel elements was completed from one week before to three weeks after leaf expansion. In diffuse-porous species, the first vessel element formation was initiated two to seven weeks after the onset of leaf expansion, and secondary wall deposition was completed four to nine weeks after leaf expansion. These results suggest that early maturation of the first vessel elements in the ring-porous species will serve for water conduction in early spring. On the contrary, the late maturation of the first vessel elements in the diffuse-porous species indicates that no new functional vessels exist at the time of the leaf expansion.


2016 ◽  
Vol 219 ◽  
pp. 44-52 ◽  
Author(s):  
Tatiane S. Soares ◽  
Felipe Oliveira ◽  
Ricardo J.S. Torquato ◽  
Sergio D. Sasaki ◽  
Mariana S. Araujo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document