Faculty Opinions recommendation of Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release.

Author(s):  
Axel Brunger
2015 ◽  
Vol 112 (31) ◽  
pp. E4316-E4325 ◽  
Author(s):  
Renhao Xue ◽  
Jon D. Gaffaney ◽  
Edwin R. Chapman

Double C2-like domain-containing proteins alpha and beta (Doc2α and Doc2β) are tandem C2-domain proteins proposed to function as Ca2+ sensors for asynchronous neurotransmitter release. Here, we systematically analyze each of the negatively charged residues that mediate binding of Ca2+ to the β isoform. The Ca2+ ligands in the C2A domain were dispensable for Ca2+-dependent translocation to the plasma membrane, with one exception: neutralization of D220 resulted in constitutive translocation. In contrast, three of the five Ca2+ ligands in the C2B domain are required for translocation. Importantly, translocation was correlated with the ability of the mutants to enhance asynchronous release when overexpressed in neurons. Finally, replacement of specific Ca2+/lipid-binding loops of synaptotagmin 1, a Ca2+ sensor for synchronous release, with corresponding loops from Doc2β, resulted in chimeras that yielded slower kinetics in vitro and slower excitatory postsynaptic current decays in neurons. Together, these data reveal the key determinants of Doc2β that underlie its function during the slow phase of synaptic transmission.


2020 ◽  
Author(s):  
Zhuo Guan ◽  
Mónica C. Quiñones-Frías ◽  
Yulia Akbergenova ◽  
J. Troy Littleton

AbstractSynchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and robust facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at release sites. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.


2019 ◽  
Author(s):  
Erica Tagliatti ◽  
Oscar D. Bello ◽  
Philipe R. F. Mendonça ◽  
Dimitrios Kotzadimitriou ◽  
Elizabeth Nicholson ◽  
...  

AbstractSynaptotagmin1 (Syt1) synchronises neurotransmitter release to action potentials acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. Whilst the Syt1 Ca2+ activation mechanism has been well characterised, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerisation provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilises Syt1 oligomerisation. Using combination of fluorescence imaging and electrophysiology in neocortical synapses we show that Syt1F349A is more efficient than wild type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and Synaptotagmin7 (Syt7)-mediated asynchronous release components both in rescue (Syt1−/− knock-out background) and dominant-interference (Syt1+/+ background) conditions. Thus we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.


2020 ◽  
Vol 117 (7) ◽  
pp. 3819-3827 ◽  
Author(s):  
Erica Tagliatti ◽  
Oscar D. Bello ◽  
Philipe R. F. Mendonça ◽  
Dimitrios Kotzadimitriou ◽  
Elizabeth Nicholson ◽  
...  

Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca2+ activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1F349A is more efficient than wild-type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1−/− knockout background) and dominant-interference (Syt1+/+ background) conditions. Thus, we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.


2014 ◽  
Vol 106 (2) ◽  
pp. 311a
Author(s):  
Eduardo A. Quiroz-Manriquez ◽  
Ramón A. Jorquera

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vincent Huson ◽  
Maaike A. van Boven ◽  
Alexia Stuefer ◽  
Matthijs Verhage ◽  
L. Niels Cornelisse

2020 ◽  
Author(s):  
Mallory C. Shields ◽  
Matthew R. Bowers ◽  
Hannah L. Kramer ◽  
McKenzie M. Fulcer ◽  
Lara C. Perinet ◽  
...  

AbstractFollowing nerve stimulation, there are two distinct phases of Ca2+-dependent neurotransmitter release: a fast, synchronous release phase, and a prolonged, asynchronous release phase. Each of these phases is tightly regulated and mediated by distinct mechanisms. Synaptotagmin 1 is the major Ca2+ sensor that triggers fast, synchronous neurotransmitter release upon Ca2+ binding by its C2A and C2B domains. It has also been implicated in the inhibition of asynchronous neurotransmitter release, as blocking Ca2+ binding by the C2A domain of synaptotagmin 1 results in increased asynchronous release. However, the mutation used to block Ca2+ binding in the previous experiments (aspartate to asparagine mutations, sytD-N) had the unintended side effect of mimicking Ca2+ binding, raising the possibility that the increase in asynchronous release was an artifact of ostensibly constitutive Ca2+ binding. To directly test this C2A inhibition hypothesis, we utilized an alternate C2A mutation that we designed to block Ca2+ binding without mimicking it (an aspartate to glutamate mutation, sytD-E). Analysis of both the original sytD-N mutation and our alternate sytD-E mutation at the Drosophila neuromuscular junction showed differential effects on asynchronous release, as well as on synchronous release and the frequency of spontaneous release. Importantly, we found that asynchronous release is not increased in the sytD-E mutant. Thus, our work provides new mechanistic insight into synaptotagmin 1 function during Ca2+-evoked synaptic transmission and demonstrates that Ca2+ binding by the C2A domain of synaptotagmin 1 does not inhibit asynchronous neurotransmitter release in vivo.Significance statementThis study provides mechanistic insights into synaptotagmin function during asynchronous neurotransmitter release and supports a dramatically different hypothesis regarding the mechanisms triggering asynchronous vesicle fusion. Using two distinct C2A mutations that block Ca2+ binding, we report opposing effects on synchronous, spontaneous, and asynchronous neurotransmitter release. Importantly, our data demonstrate that Ca2+ binding by the C2A domain of synaptotagmin does not regulate asynchronous release and thus disprove the current inhibition hypothesis. We propose a spatial competition hypothesis to explain these seemingly discordant results of the differing C2A Ca2+ binding mutations.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Zhuo Guan ◽  
Monica C Quiñones-Frías ◽  
Yulia Akbergenova ◽  
J Troy Littleton

Synchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and intact facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at active zones. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.


2014 ◽  
Vol 25 (4) ◽  
pp. 481-494 ◽  
Author(s):  
Jon D. Gaffaney ◽  
Renhao Xue ◽  
Edwin R. Chapman

Double C2-domain protein (Doc2) is a Ca2+-binding protein implicated in asynchronous and spontaneous neurotransmitter release. Here we demonstrate that each of its C2 domains senses Ca2+; moreover, the tethered tandem C2 domains display properties distinct from the isolated domains. We confirm that overexpression of a mutant form of Doc2β, in which two acidic Ca2+ ligands in the C2A domain and two in the C2B domain have been neutralized, results in markedly enhanced asynchronous release in synaptotagmin 1–knockout neurons. Unlike wild-type (wt) Doc2β, which translocates to the plasma membrane in response to increases in [Ca2+]i, the quadruple Ca2+-ligand mutant does not bind Ca2+ but is constitutively associated with the plasma membrane; this effect is due to substitution of Ca2+ ligands in the C2A domain. When overexpressed in wt neurons, Doc2β affects only asynchronous release; in contrast, Doc2β Ca2+-ligand mutants that constitutively localize to the plasma membrane enhance both the fast and slow components of synaptic transmission by increasing the readily releasable vesicle pool size; these mutants also increase the frequency of spontaneous release events. Thus, mutations in the C2A domain of Doc2β that were intended to disrupt Ca2+ binding result in an anomalous enhancement of constitutive membrane-binding activity and endow Doc2β with novel functional properties.


Sign in / Sign up

Export Citation Format

Share Document