Faculty Opinions recommendation of Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a.

Author(s):  
Anthony D Ho
Blood ◽  
2009 ◽  
Vol 114 (21) ◽  
pp. 4645-4653 ◽  
Author(s):  
Maria I. Mascarenhas ◽  
Aimée Parker ◽  
Elaine Dzierzak ◽  
Katrin Ottersbach

Abstract The first adult-repopulating hematopoietic stem cells (HSCs) are detected starting at day 10.5 of gestation in the aorta-gonads-mesonephros (AGM) region of the mouse embryo. Despite the importance of the AGM in initiating HSC production, very little is currently known about the regulators that control HSC emergence in this region. We have therefore further defined the location of HSCs in the AGM and incorporated this information into a spatial and temporal comparative gene expression analysis of the AGM. The comparisons included gene expression profiling (1) in the newly identified HSC-containing region compared with the region devoid of HSCs, (2) before and after HSC emergence in the AGM microenvironment, and (3) on populations enriched for HSCs and their putative precursors. Two genes found to be up-regulated at the time and place where HSCs are first detected, the cyclin-dependent kinase inhibitor p57Kip2/Cdkn1c and the insulin-like growth factor 2, were chosen for further analysis. We demonstrate here that they play a novel role in AGM hematopoiesis. Interestingly, many genes involved in the development of the tissues surrounding the dorsal aorta are also up-regulated during HSC emergence, suggesting that the regulation of HSC generation occurs in coordination with the development of other organs.


2013 ◽  
Vol 12 (1) ◽  
pp. 88-100 ◽  
Author(s):  
M. Ángeles Marqués-Torrejón ◽  
Eva Porlan ◽  
Ana Banito ◽  
Esther Gómez-Ibarlucea ◽  
Andrés J. Lopez-Contreras ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (3) ◽  
pp. 263-276 ◽  
Author(s):  
Swati Garg ◽  
Armando Reyes-Palomares ◽  
Lixiazi He ◽  
Anne Bergeron ◽  
Vincent-Philippe Lavallée ◽  
...  

Abstract FLT3, DNMT3A, and NPM1 are the most frequently mutated genes in cytogenetically normal acute myeloid leukemia (AML), but little is known about how these mutations synergize upon cooccurrence. Here we show that triple-mutated AML is characterized by high leukemia stem cell (LSC) frequency, an aberrant leukemia-specific GPR56highCD34low immunophenotype, and synergistic upregulation of Hepatic Leukemia Factor (HLF). Cell sorting based on the LSC marker GPR56 allowed isolation of triple-mutated from DNMT3A/NPM1 double-mutated subclones. Moreover, in DNMT3A R882-mutated patients, CpG hypomethylation at the HLF transcription start site correlated with high HLF mRNA expression, which was itself associated with poor survival. Loss of HLF via CRISPR/Cas9 significantly reduced the CD34+GPR56+ LSC compartment of primary human triple-mutated AML cells in serial xenotransplantation assays. HLF knockout cells were more actively cycling when freshly harvested from mice, but rapidly exhausted when reintroduced in culture. RNA sequencing of primary human triple-mutated AML cells after shRNA-mediated HLF knockdown revealed the NOTCH target Hairy and Enhancer of Split 1 (HES1) and the cyclin-dependent kinase inhibitor CDKN1C/p57 as novel targets of HLF, potentially mediating these effects. Overall, our data establish HLF as a novel LSC regulator in this genetically defined high-risk AML subgroup.


Nature ◽  
2006 ◽  
Vol 443 (7110) ◽  
pp. 421-426 ◽  
Author(s):  
Viktor Janzen ◽  
Randolf Forkert ◽  
Heather E. Fleming ◽  
Yoriko Saito ◽  
Michael T. Waring ◽  
...  

Stem Cells ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 219-229 ◽  
Author(s):  
Zoraida Andreu ◽  
Muhammad Amir Khan ◽  
Pilar González-Gómez ◽  
Santiago Negueruela ◽  
Rafael Hortigüela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document