Faculty Opinions recommendation of Structure of a sliding clamp on DNA.

Author(s):  
Martin Marinus
Keyword(s):  
Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1083
Author(s):  
Adhirath Sikand ◽  
Malgorzata Jaszczur ◽  
Linda B. Bloom ◽  
Roger Woodgate ◽  
Michael M. Cox ◽  
...  

In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.


2020 ◽  
Vol 52 (12) ◽  
pp. 1948-1958
Author(s):  
Kyoo-young Lee ◽  
Su Hyung Park

AbstractEukaryotic sliding clamp proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity factor for DNA polymerases and as a binding and acting platform for many proteins. The ring-shaped PCNA homotrimer and the DNA damage checkpoint clamp 9-1-1 are loaded onto DNA by clamp loaders. PCNA can be loaded by the pentameric replication factor C (RFC) complex and the CTF18-RFC-like complex (RLC) in vitro. In cells, each complex loads PCNA for different purposes; RFC-loaded PCNA is essential for DNA replication, while CTF18-RLC-loaded PCNA participates in cohesion establishment and checkpoint activation. After completing its tasks, PCNA is unloaded by ATAD5 (Elg1 in yeast)-RLC. The 9-1-1 clamp is loaded at DNA damage sites by RAD17 (Rad24 in yeast)-RLC. All five RFC complex components, but none of the three large subunits of RLC, CTF18, ATAD5, or RAD17, are essential for cell survival; however, deficiency of the three RLC proteins leads to genomic instability. In this review, we describe recent findings that contribute to the understanding of the basic roles of the RFC complex and RLCs and how genomic instability due to deficiency of the three RLCs is linked to the molecular and cellular activity of RLC, particularly focusing on ATAD5 (Elg1).


2003 ◽  
Vol 278 (41) ◽  
pp. 40272-40281 ◽  
Author(s):  
Chiara Indiani ◽  
Mike O'Donnell
Keyword(s):  

Biochemistry ◽  
2000 ◽  
Vol 39 (11) ◽  
pp. 3076-3090 ◽  
Author(s):  
Stephen C. Alley ◽  
Ernesto Abel-Santos ◽  
Stephen J. Benkovic

2018 ◽  
Vol 46 (19) ◽  
pp. 10474-10488 ◽  
Author(s):  
Ke Shi ◽  
Thomas E Bohl ◽  
Jeonghyun Park ◽  
Andrew Zasada ◽  
Shray Malik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document