Faculty Opinions recommendation of Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity.

Author(s):  
Ronald Germain ◽  
Wolfgang Kastenmüller
Science ◽  
2008 ◽  
Vol 322 (5904) ◽  
pp. 1097-1100 ◽  
Author(s):  
K. Hildner ◽  
B. T. Edelson ◽  
W. E. Purtha ◽  
M. Diamond ◽  
H. Matsushita ◽  
...  

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 706
Author(s):  
Chunmei Fu ◽  
Li Zhou ◽  
Qing-Sheng Mi ◽  
Aimin Jiang

As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A711-A711
Author(s):  
Ellen Duong ◽  
Timothy Fessenden ◽  
Emi Lutz ◽  
Teresa Dinter ◽  
Leon Yim ◽  
...  

BackgroundConventional dendritic cells (cDC) are critical mediators of protective anti-tumor CD8+ T-cell responses.1 Batf3-driven DC1 are the predominant cDC subset driving anti-tumor immunity due to their specialized ability to cross-present antigens for T-cell activation.2–4 However, the contribution of other tumor-infiltrating DC subsets such as CD11b+ DC2 to anti-tumor immunity remains poorly characterized. Recent studies suggest that under inflammation, DC subsets can exist in various functional states with differential impacts on their stimulatory potential.5–7 In this study, we sought to dissect the contributions of distinct DC states during a productive or dysfunctional anti-tumor immune response. A nuanced understanding of DC activation states in tumors and the signals that drive them carries therapeutic potential to modulate anti-tumor immunity and enhance immunotherapy responses.MethodsWe compared the DC infiltrate of a regressing tumor and a progressing tumor to study DC states. Flow immunophenotyping and RNA-sequencing was performed to profile the intratumoral DC compartment. Sorted DC subsets were co-cultured with T-cells ex vivo to evaluate their stimulatory capacity. Cross-dressing (in vivo/ex vivo) was assayed by staining for transfer of tumor-derived H-2b MHC complexes to MHC-mismatched or β2M-deficient DC.ResultsAnti-tumor CD8+ T-cell responses in Batf3-/- mice lacking DC1 were maintained in regressor tumors but not progressor tumors, suggesting DC1-independent anti-tumor immunity. Functional assays and RNA-sequencing of the intratumoral DC compartment of regressor tumors revealed a Zbtb46-dependent CD11b+ cDC activation state expressing an interferon-stimulated gene signature (ISG+ DC) that was critical for driving optimal anti-tumor CD8+ T-cell responses. Sorted ISG+ DC could activate CD8+ T-cells similar to DC1. Unlike cross-presenting DC1, however, ISG+ DC acquired antigens by cross-dressing with tumor-derived peptide-MHC, thereby bypassing the requirement for cross-presentation to initiate CD8+ T-cell-immunity. Interestingly, ISG+ DC were enriched in regressor tumors compared to progressor tumors, and this was attributable to constitutive tumor cell-intrinsic type-I-interferon (IFN-I) production in regressor tumors. Ablation of tumor cell-derived IFN-I in regressor tumors led to complete loss of anti-tumor T-cell responses in Batf3-/- mice. Conversely, addition of IFNβ to progressor tumors induced ISG+ DC and rescued anti-tumor T-cell responses in Batf3-/- mice.ConclusionsWe identified a novel IFN-I-induced activation state of CD11b+ cDC, called ISG+ DC, that was capable of driving anti-tumor CD8+ T cell immunity by cross-dressing with tumor-derived pMHC complexes in the absence of DC1. Engaging additional functional states of DC, such as ISG+ DC, will strengthen anti-tumor immunity and may improve immunotherapy responses.ReferencesMerad M, et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013;31:563–604Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904)1097–100.Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5):638–52.Roberts EW, et al. Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in Melanoma. Cancer Cell 2016;30(2):324–336.Maier B, et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 2020;580(7802):257–262.Bosteels C, et al. Inflammatory Type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity 2020;52(6):1039–1056.e9.Zilionis R, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 2019;50(5):1317–1334.e10.


Cancer Cell ◽  
2016 ◽  
Vol 30 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Edward W. Roberts ◽  
Miranda L. Broz ◽  
Mikhail Binnewies ◽  
Mark B. Headley ◽  
Amanda E. Nelson ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A574-A574
Author(s):  
Ellen Duong ◽  
Timothy Fessenden ◽  
Arjun Bhutkar ◽  
Stefani Spranger

BackgroundCytotoxic (CD8+) T-cells are required for tumor eradication and durable anti-tumor immunity.1 The induction of tumor-reactive CD8+ T-cells is predominately attributed to a subset of dendritic cells (DC) called Batf3-driven DC1, given their robust ability to cross-present antigens for T-cell priming and their role in effector T-cell recruitment.2–4 Presence of the DC1 signature in tumors correlates with improved survival and response to immunotherapies.5–7 Yet, most tumors with a DC1 infiltrate still progress, suggesting that while DC1 can initiate tumor-reactive CD8+ T-cell responses, they are unable to sustain them. Therefore, there is a critical need to identify and engage additional stimulatory DC subsets to strengthen anti-tumor immunity and boost immunotherapy responses.MethodsTo identify DC subsets that drive poly-functional CD8+ T-cell responses, we compared the DC infiltrate of a spontaneously regressing tumor with a progressing tumor. Multicolor flow immunophenotyping and single-cell RNA-sequencing were used to profile the DC compartment of both tumors. IFNγ-ELISpot was performed on splenocytes to assess for systemic tumor-reactive T-cell responses. Sorted DC subsets from tumors were co-cultured with TCR-transgenic T-cells ex vivo to evaluate their stimulatory capacity. Cross-dressing (in vivo/ex vivo) was assayed by staining for transfer of tumor-derived H-2b MHC complexes to Balb/c DC, which express the H-2d haplotype. Protective systemic immunity was assayed via contralateral flank tumor outgrowth experiments.ResultsRegressor tumors were infiltrated with more cross-presenting DC1 than progressor tumors. However, tumor-reactive CD8+ T-cell responses and tumor control were preserved in Batf3-/- mice lacking DC1, indicating that anti-tumor immune responses could be induced independent of DC1. Through functional assays, we established that anti-tumor immunity against regressor tumors required CD11c+ DC and cGAS/STING-independent type-I-interferon-sensing. Single-cell RNA-sequencing of the immune infiltrate of regressor tumors revealed a novel CD11b+ DC subset expressing an interferon-stimulated gene signature (ISG+ DC). Flow studies demonstrated that ISG+ DC were more enriched in regressor tumors than progressor tumors. We showed that ISG+ DC could activate CD8+ T-cells by cross-dressing with tumor-derived peptide-MHC complexes, thereby bypassing the requirement for cross-presentation to initiate CD8+ T-cell-driven immunity. ISG+ DC highly expressed cytosolic dsRNA sensors (RIG-I/MDA5) and could be therapeutically harnessed by exogenous addition of a dsRNA analog to drive protective CD8+ T-cell responses in DC1-deficient mice.ConclusionsThe DC infiltrate in tumors can dictate the strength of anti-tumor immunity. Harnessing multiple stimulatory DC subsets, such as cross-presenting DC1 and cross-dressing ISG+ DC, provides a therapeutic opportunity to enhance anti-tumor immunity and increase immunotherapy responses.ReferencesFridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer 2012;12(4): p. 298–306.Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904):p. 1097–100.Spranger S, et al. Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31(5):p. 711–723.e4.Roberts, EW, et al., Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 2016;30(2): p. 324–336.Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5): p. 638–52.Salmon H., et al., Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 2016. 44(4): p. 924–38.Sánchez-Paulete AR, et al., Cancer immunotherapy with immunomodulatory anti-CD137 and Anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov, 2016;6(1):p. 71–9.


Sign in / Sign up

Export Citation Format

Share Document