Faculty Opinions recommendation of Ocean acidification causes bleaching and productivity loss in coral reef builders.

Author(s):  
Helen Yap
2008 ◽  
Vol 105 (45) ◽  
pp. 17442-17446 ◽  
Author(s):  
K. R. N. Anthony ◽  
D. I. Kline ◽  
G. Diaz-Pulido ◽  
S. Dove ◽  
O. Hoegh-Guldberg

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Steve S. Doo ◽  
Peter J. Edmunds ◽  
Robert C. Carpenter

2012 ◽  
Vol 117 (C3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Emily C. Shaw ◽  
Ben I. McNeil ◽  
Bronte Tilbrook

2021 ◽  
Author(s):  
Christopher Jury ◽  
Keisha Bahr ◽  
Evan Barba ◽  
Russell Brainard ◽  
Annick Cros ◽  
...  

Abstract Coral reefs are among the most sensitive ecosystems affected by ocean acidification and warming, and are predicted to shift from net accreting calcifier-dominated systems to net eroding algal-dominated systems over the coming decades. Here we present a long-term experimental study examining the responses of entire mesocosm coral reef communities to acidification (-0.2 pH units), warming (+ 2°C), and combined future ocean (-0.2 pH, + 2°C) treatments. We show that under future ocean conditions, net calcification rates declined yet remained positive, corals showed reduced abundance yet were not extirpated, and community composition shifted while species richness was maintained. Our results suggest that under Paris Climate Agreement targets, coral reefs could persist in an altered functional state rather than collapse.


2021 ◽  
Author(s):  
Matthew A. Vaughan ◽  
Danielle L. Dixson

AbstractCoral reef organisms are exposed to both an increasing magnitude of pCO2, and natural fluctuations on a diel scale. For coral reef fishes, one of the most profound effects of ocean acidification is the impact on ecologically important behaviors. Previous behavioral research has primarily been conducted under static pCO2 conditions and have recently come under criticism. Recent studies have provided evidence that the negative impacts on behavior may be reduced under more environmentally realistic, fluctuating conditions. We investigated the impact of both present and future day, static (500 and 1000 μatm) and diel fluctuating (500 ± 200 and 1000 ± 200 μatm) pCO2 on the lateralization and chemosensory behavior of juvenile anemonefish, Amphiprion percula. Our static experimental comparisons support previous findings that under elevated pCO2, fish become un-lateralized and lose the ability to discriminate olfactory cues. Diel-fluctuating pCO2 may aid in mitigating the severity of some behavioral abnormalities such as the chemosensory response, where a preference for predator cues was significantly reduced under a future diel-fluctuating pCO2 regime. This research aids in ground truthing earlier findings and contributes to our growing knowledge of the role of fluctuating conditions.


Coral Reefs ◽  
2020 ◽  
Vol 39 (5) ◽  
pp. 1215-1220
Author(s):  
Jodie L. Rummer ◽  
Ian A. Bouyoucos ◽  
Johann Mourier ◽  
Nao Nakamura ◽  
Serge Planes

2015 ◽  
Vol 12 (2) ◽  
pp. 365-372 ◽  
Author(s):  
S. Comeau ◽  
R. C. Carpenter ◽  
C. A. Lantz ◽  
P. J. Edmunds

Abstract. Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~ 400 μatm) and high pCO2 (~ 1300 μatm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.


Sign in / Sign up

Export Citation Format

Share Document