tropical coral
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 47)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Marco Andrello ◽  
Emily S. Darling ◽  
Amelia Wenger ◽  
Andrés F. Suárez‐Castro ◽  
Sharla Gelfand ◽  
...  
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
Lin Pu ◽  
Ruoyi Lin ◽  
Tao Zou ◽  
Zhengfeng Wang ◽  
Mei Zhang ◽  
...  

Canavalia rosea, distributed in the coastal areas of tropical and subtropical regions, is an extremophile halophyte with good adaptability to high salinity/alkaline and drought tolerance. Plant sodium/hydrogen (Na+/H+) exchanger (NHX) genes encode membrane transporters involved in sodium ion (Na+), potassium ion (K+), and lithium ion (Li+) transport and pH homeostasis, thereby playing key roles in salinity tolerance. However, the NHX family has not been reported in this leguminous halophyte. In the present study, a genome-wide comprehensive analysis was conducted and finally eight CrNHXs were identified in C. rosea genome. Based on the bioinformatics analysis about the chromosomal location, protein domain, motif organization, and phylogenetic relationships of CrNHXs and their coding proteins, as well as the comparison with plant NHXs from other species, the CrNHXs were grouped into three major subfamilies (Vac-, Endo-, and PM-NHX). Promoter analyses of cis-regulatory elements indicated that the expression of different CrNHXs was affected by a series of stress challenges. Six CrNHXs showed high expression levels in five tested tissues of C. rosea in different levels, while CrNHX1 and CrNHX3 were expressed at extremely low levels, indicating that CrNHXs might be involved in regulating the development of C. rosea plant. The expression analysis based on RNA-seq showed that the transcripts of most CrNHXs were obviously decreased in mature leaves of C. rosea plant growing on tropical coral reefs, which suggested their involvement in this species’ adaptation to reefs and specialized islands habitats. Furthermore, in the single-factor stress treatments mimicking the extreme environments of tropical coral reefs, the RNA-seq data also implied CrNHXs holding possible gene-specific regulatory roles in the environmental adaptation. The qRT-PCR based expression profiling exhibited that CrNHXs responded to different stresses to varying degrees, which further confirmed the specificity of CrNHXs’ in responding to abiotic stresses. Moreover, the yeast functional complementation test proved that some CrNHXs could partially restore the salt tolerance of the salt-sensitive yeast mutant AXT3. This study provides comprehensive bio-information and primary functional identification of NHXs in C. rosea, which could help improve the salt/alkaline tolerance of genetically modified plants for further studies. This research also contributes to our understanding of the possible molecular mechanism whereby NHXs maintain the ion balance in the natural ecological adaptability of C. rosea to tropical coral islands and reefs.


Author(s):  
James J. Bell ◽  
Valerio Micaroni ◽  
Francesca Strano

Despite the global focus on the occurrence of regime shifts on shallow-water tropical coral reefs over the last two decades, most of this research continues to focus on changes to algal-dominated states. Here, we review recent reports (in approximately the last decade) of regime shifts to states dominated by animal groups other than zooxanthellate Scleractinian corals. We found that while there have been new reports of regime shifts to reefs dominated by Ascidacea, Porifera, Octocorallia, Zoantharia, Actiniaria and azooxanthellate Scleractinian corals, some of these changes occurred many decades ago, but have only just been reported in the literature. In most cases, these reports are over small to medium spatial scales (<4 × 104 m2 and 4 × 104 to 2 × 106 m2, respectively). Importantly, from the few studies where we were able to collect information on the persistence of the regime shifts, we determined that these non-scleractinian states are generally unstable, with further changes since the original regime shift. However, these changes were not generally back to coral dominance. While there has been some research to understand how sponge- and octocoral-dominated systems may function, there is still limited information on what ecosystem services have been disrupted or lost as a result of these shifts. Given that many coral reefs across the world are on the edge of tipping points due to increasing anthropogenic stress, we urgently need to understand the consequences of non-algal coral reef regime shifts.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Dakis-Yaoba Ouédraogo ◽  
Olivier Perceval ◽  
Christine Ferrier-Pagès ◽  
Isabelle Domart-Coulon ◽  
Laetitia Hédouin ◽  
...  

Abstract Background Tropical coral reefs cover only ca. 0.1% of the Earth’s surface but host an outstanding biodiversity and provide important ecosystem services to millions of people living nearby. They are currently threatened by global (e.g., climate change) and local (e.g., chemical pollution) stressors that interact in different ways. While global stressors cannot be mitigated by local actions alone, local stressors can be reduced through ecosystem management. A systematic map on the impacts of chemicals arising from anthropogenic activities on tropical reef-building corals, which are the main engineer species of reef ecosystems, was published in 2021. This systematic map gathered an abundant literature (908 articles corresponding to 7937 studies), and identified four well-represented subtopics, amenable to relevant full syntheses. Here, we focused on one of the four subtopics: we aimed to systematically review the evidence on the ecotoxicological effects of chemicals on tropical reef-building corals. Methods The evidence will be identified from the recent systematic map on the impacts of chemicals arising from anthropogenic activities on tropical reef-building corals. Especially, all studies in the map database corresponding to the knowledge cluster “evidence on the ecotoxicological effects of chemicals on corals” will be selected. To identify the evidence produced since then, a search update will be performed using a subset of the search string used for the systematic map, and titles, abstracts and full-texts will be screened according to the criteria defining the selected cluster of the map. In addition, as the eligibility criteria for the systematic review are narrower than those used to define the cluster in the systematic map, additional screening will be carried out. The included studies will then be critically appraised and a low, medium, or high risk of bias will be assigned to each study. Data will be extracted from studies and synthesised according to a strategy depending on the type of exposure and outcome. Synthesis will be mainly quantitative but also narrative, aiming to identify toxicity thresholds of chemicals for corals.


2021 ◽  
Author(s):  
◽  
Michael Cowlin

<p>This study investigated the responses of the temperate anemone Anthopleura aureoradiata, and the tropical coral Acropora aspera to osmotic stress and the role that free amino acids (FAAs) may play in the osmoregulatory mechanism of these anthozoan-dinoflagellate symbioses. Specimens were exposed to a range of hypo- and hyper-saline conditions for durations of 1, 12, 48 and 96 hours, whereupon respiration and photosynthetic rates were measured as physiological indicators of osmotic stress. High performance liquid chromatography was used to quantify 15 FAAs within the anthozoan host tissues to establish the response of FAA pools to osmotic stress and whether FAAs are used in an osmoregulatory capacity. Aposymbiotic specimens of A. aureoradiata were similarly tested to establish if the presence of symbiotic dinoflagellates alters the host’s capacity to respond to osmotic stress given that the symbionts are known to release FAAs into the host cytoplasm. In A. aureoradiata, significant changes in respiration were only observed with exposure to the extreme hypo-osmotic salinity of 12‰, with respiration decreasing by 67% after 1 hour of exposure. No significant changes in respiration were seen at 25, 43 or 50‰, despite a 52% decrease in respiration seen at the hyper-saline treatment of 50‰. The response of the coral A. aspera was markedly different, showing an increase in respiration in response to hypo-salinity (22 and 28‰). Interestingly, the most pronounced respiratory increase of up to 460% occurred in the less extreme hypo-saline treatment of 28‰. The response of photosynthesis also showed differences between the two species. In the symbiotic A. aureoradiata, photosynthesis declined by 61% after the 1 hour exposure to 12‰ and further decreased to 72% below control rates after 96 hours. While in A. aspera, photosynthesis showed no significant deviation from control levels at any of the treatment salinities. FAA pools in both A. aureoradiata and A. aspera showed significant responses to osmotic stress. In symbiotic A. aureoradiata, exposure to 12‰ caused total FAA pools to decline by 50% after 1 hour, after which a seemingly stable state was reached. A hyper-osmotic treatment of 50‰ resulted in a similar trend with a more than 50% decrease after 1 hour of exposure. In A. aspera, the response of the FAA pool was markedly different, with the concentration increasing by up to 200% with exposure to 22‰ and by more than 260% at 28‰. Interestingly, one on the main constituents of FAA pools in A. aureoradiata, Taurine (15% of FAA pools at 35‰), was not present in measurable quantities within A. aspera host tissue. In aposymbiotic individuals of A. aureoradiata exposed to extreme hypo- and hyper-saline treatments of 12 and 50‰ a significant impact on respiration was only observed at 12‰, with a 77% decrease in respiration after 96 hours. Changes in FAA pools of aposymbiotic A. aureoradiata were only seen after 12 hours exposure to 50‰ with a significant 26% decrease. However, the direct comparison between symbiotic and aposymbiotic A. aureoradiata did serve to highlight the contribution of symbiont-derived FAAs to the host pool of FAAs, with FAA pools in aposymbiotic anemones up to 41% lower than those found in symbiotic anemones. The results seen here were not suggestive of FAAs being regulated for the explicit use as compatible organic osmolytes. Rather, changes in FAA pools showed changes consistent with other stress responses. Moreover, the response of anthozoan-dinoflagellate symbioses to osmotic stress appears to be species specific, or at least taxa specific, as the responses of respiration, photosynthesis and FAA pools were very different between the temperate anemone A. aureoradiata and the tropical coral A. aspera. Nevertheless, differences in the respiratory response between symbiotic and apo-symbiotic anemones did indicate some influence of the dinoflagellate symbionts on the ability of the anthozoan host to mediate osmotic stress. It may therefore be that other symbiont-derived compounds are utilised as compatible organic osmolytes (COOs), with a primary candidate being glycerol. This warrants further investigation.</p>


2021 ◽  
Author(s):  
◽  
Michael Cowlin

<p>This study investigated the responses of the temperate anemone Anthopleura aureoradiata, and the tropical coral Acropora aspera to osmotic stress and the role that free amino acids (FAAs) may play in the osmoregulatory mechanism of these anthozoan-dinoflagellate symbioses. Specimens were exposed to a range of hypo- and hyper-saline conditions for durations of 1, 12, 48 and 96 hours, whereupon respiration and photosynthetic rates were measured as physiological indicators of osmotic stress. High performance liquid chromatography was used to quantify 15 FAAs within the anthozoan host tissues to establish the response of FAA pools to osmotic stress and whether FAAs are used in an osmoregulatory capacity. Aposymbiotic specimens of A. aureoradiata were similarly tested to establish if the presence of symbiotic dinoflagellates alters the host’s capacity to respond to osmotic stress given that the symbionts are known to release FAAs into the host cytoplasm. In A. aureoradiata, significant changes in respiration were only observed with exposure to the extreme hypo-osmotic salinity of 12‰, with respiration decreasing by 67% after 1 hour of exposure. No significant changes in respiration were seen at 25, 43 or 50‰, despite a 52% decrease in respiration seen at the hyper-saline treatment of 50‰. The response of the coral A. aspera was markedly different, showing an increase in respiration in response to hypo-salinity (22 and 28‰). Interestingly, the most pronounced respiratory increase of up to 460% occurred in the less extreme hypo-saline treatment of 28‰. The response of photosynthesis also showed differences between the two species. In the symbiotic A. aureoradiata, photosynthesis declined by 61% after the 1 hour exposure to 12‰ and further decreased to 72% below control rates after 96 hours. While in A. aspera, photosynthesis showed no significant deviation from control levels at any of the treatment salinities. FAA pools in both A. aureoradiata and A. aspera showed significant responses to osmotic stress. In symbiotic A. aureoradiata, exposure to 12‰ caused total FAA pools to decline by 50% after 1 hour, after which a seemingly stable state was reached. A hyper-osmotic treatment of 50‰ resulted in a similar trend with a more than 50% decrease after 1 hour of exposure. In A. aspera, the response of the FAA pool was markedly different, with the concentration increasing by up to 200% with exposure to 22‰ and by more than 260% at 28‰. Interestingly, one on the main constituents of FAA pools in A. aureoradiata, Taurine (15% of FAA pools at 35‰), was not present in measurable quantities within A. aspera host tissue. In aposymbiotic individuals of A. aureoradiata exposed to extreme hypo- and hyper-saline treatments of 12 and 50‰ a significant impact on respiration was only observed at 12‰, with a 77% decrease in respiration after 96 hours. Changes in FAA pools of aposymbiotic A. aureoradiata were only seen after 12 hours exposure to 50‰ with a significant 26% decrease. However, the direct comparison between symbiotic and aposymbiotic A. aureoradiata did serve to highlight the contribution of symbiont-derived FAAs to the host pool of FAAs, with FAA pools in aposymbiotic anemones up to 41% lower than those found in symbiotic anemones. The results seen here were not suggestive of FAAs being regulated for the explicit use as compatible organic osmolytes. Rather, changes in FAA pools showed changes consistent with other stress responses. Moreover, the response of anthozoan-dinoflagellate symbioses to osmotic stress appears to be species specific, or at least taxa specific, as the responses of respiration, photosynthesis and FAA pools were very different between the temperate anemone A. aureoradiata and the tropical coral A. aspera. Nevertheless, differences in the respiratory response between symbiotic and apo-symbiotic anemones did indicate some influence of the dinoflagellate symbionts on the ability of the anthozoan host to mediate osmotic stress. It may therefore be that other symbiont-derived compounds are utilised as compatible organic osmolytes (COOs), with a primary candidate being glycerol. This warrants further investigation.</p>


2021 ◽  
Author(s):  
◽  
Michael Doherty

<p>Ocean acidification has the potential to drastically alter the coral reef ecosystem by reducing the calcification rate of corals and other reef-builders, and hence a considerable amount of research is now focused on this issue. It also is conceivable that acidification may affect other physiological processes of corals. In particular, acidification may alter photosynthetic physiology and hence the productivity of the coraldinoflagellate symbiosis that is pivotal to the reef's survival and growth. However, very little is known about the impacts of acidification on the photophysiology of corals or, indeed, other invertebrate-algal symbioses. This gap in our knowledge was addressed here by measuring the impacts of acidification (pH 7.6 versus pH 8.1) on the photophysiology and health of the tropical coral Stylophora pistillata and its isolated dinoflagellate symbionts ('zooxanthellae'), and the temperate sea anemone Anthopleura aureoradiata. The comparative nature of this study allowed for any differences between tropical and temperate symbioses, and zooxanthellae in a symbiotic or free-living state, to be assessed. Corals, anemones and cultured zooxanthellae were maintained in flowthrough seawater systems, and treated either with non-acidified (control) seawater at pH 8.1, or seawater acidified with CO2 or HCl to pH 7.6. A variety of parameters, including zooxanthellar density, chlorophyll content, photosynthetic health (Yi), and the ratio of gross photosynthetic production to respiration (P:R) were measured via cell counts, spectrophotometry, respirometry and PAM fluorometry, at a series of time-points up to a maximum of 42 days. Acidification generated by the addition of CO2 had no discernible effect on Yi of either the corals or anemones. However, in the coral, chlorophyll content per zooxanthella cell increased by 25%, which was countered by a near-significant decline (22%) in the rate of gross photosynthesis per unit chlorophyll; as zooxanthellar density remained unchanged, this led to a constant P:R ratio. When acidified via CO2, the isolated zooxanthellae exhibited no impacts in recorded Yi or chlorophyll levels. The response of the anemone to acidification via CO2 was different to that observed in the coral, as the density of zooxanthellae increased, rather than the chlorophyll content per cell, leading to an increased rate of gross photosynthesis. However P:R again remained constant as the increased photosynthesis was matched by an increased rate of respiration. In contrast to the impacts of CO2, HCl adversely impacted the chlorophyll content per cell in both the isolated zooxanthellae and sea anemone, and Yi, gross photosynthesis per cell, and overall gross photosynthesis in the sea anemone; however, despite the decline in gross photosynthesis, P:R remained constant due to the concurrent decline in respiration. Unfortunately, the corals in the HCl experiment died due to technical issues. There are two plausible reasons for this difference between CO2 and HCl. Firstly, HCl may have caused intracellular acidosis which damaged chloroplast structure and photosynthetic function. Secondly, the increased levels of aqueous CO2 stimulated photosynthetic function and hence mitigated for the effects of lowered pH. In addition, evidence is presented for a pH threshold for A. aureoradiata of between pH 6 and pH 6.75 (acidified with HCl), at which point photosynthesis 'shuts-down'. This suggests that, even without the potentially beneficial effects from increased CO2 levels, it is likely that oceanic pH would need to decrease to less than pH 6.75 for any acidosis effects to compromise the productivity of this particular symbiosis. Since acidification will have the benefits of increased CO2 and will reach nowhere near such low pH levels as those extremes tested here, it is proposed that ocean acidification via increased dissolution of CO2 into our oceans will have no impact on the photosynthetic production of symbiotic cnidarians. Indeed, it is entirely likely that increased CO2 will add some benefit to the usually carbon-limited symbiotic zooxanthellae. Ocean acidification is not likely to benefit corals however, with compromised calcification rates likely to undermine the viability of the coral. Symbiotic sea anemones, which do not bio-mineralise CaCO3, are better placed to take advantage of the increased CO2 as we move toward more acidic oceans.</p>


2021 ◽  
Author(s):  
◽  
Michael Doherty

<p>Ocean acidification has the potential to drastically alter the coral reef ecosystem by reducing the calcification rate of corals and other reef-builders, and hence a considerable amount of research is now focused on this issue. It also is conceivable that acidification may affect other physiological processes of corals. In particular, acidification may alter photosynthetic physiology and hence the productivity of the coraldinoflagellate symbiosis that is pivotal to the reef's survival and growth. However, very little is known about the impacts of acidification on the photophysiology of corals or, indeed, other invertebrate-algal symbioses. This gap in our knowledge was addressed here by measuring the impacts of acidification (pH 7.6 versus pH 8.1) on the photophysiology and health of the tropical coral Stylophora pistillata and its isolated dinoflagellate symbionts ('zooxanthellae'), and the temperate sea anemone Anthopleura aureoradiata. The comparative nature of this study allowed for any differences between tropical and temperate symbioses, and zooxanthellae in a symbiotic or free-living state, to be assessed. Corals, anemones and cultured zooxanthellae were maintained in flowthrough seawater systems, and treated either with non-acidified (control) seawater at pH 8.1, or seawater acidified with CO2 or HCl to pH 7.6. A variety of parameters, including zooxanthellar density, chlorophyll content, photosynthetic health (Yi), and the ratio of gross photosynthetic production to respiration (P:R) were measured via cell counts, spectrophotometry, respirometry and PAM fluorometry, at a series of time-points up to a maximum of 42 days. Acidification generated by the addition of CO2 had no discernible effect on Yi of either the corals or anemones. However, in the coral, chlorophyll content per zooxanthella cell increased by 25%, which was countered by a near-significant decline (22%) in the rate of gross photosynthesis per unit chlorophyll; as zooxanthellar density remained unchanged, this led to a constant P:R ratio. When acidified via CO2, the isolated zooxanthellae exhibited no impacts in recorded Yi or chlorophyll levels. The response of the anemone to acidification via CO2 was different to that observed in the coral, as the density of zooxanthellae increased, rather than the chlorophyll content per cell, leading to an increased rate of gross photosynthesis. However P:R again remained constant as the increased photosynthesis was matched by an increased rate of respiration. In contrast to the impacts of CO2, HCl adversely impacted the chlorophyll content per cell in both the isolated zooxanthellae and sea anemone, and Yi, gross photosynthesis per cell, and overall gross photosynthesis in the sea anemone; however, despite the decline in gross photosynthesis, P:R remained constant due to the concurrent decline in respiration. Unfortunately, the corals in the HCl experiment died due to technical issues. There are two plausible reasons for this difference between CO2 and HCl. Firstly, HCl may have caused intracellular acidosis which damaged chloroplast structure and photosynthetic function. Secondly, the increased levels of aqueous CO2 stimulated photosynthetic function and hence mitigated for the effects of lowered pH. In addition, evidence is presented for a pH threshold for A. aureoradiata of between pH 6 and pH 6.75 (acidified with HCl), at which point photosynthesis 'shuts-down'. This suggests that, even without the potentially beneficial effects from increased CO2 levels, it is likely that oceanic pH would need to decrease to less than pH 6.75 for any acidosis effects to compromise the productivity of this particular symbiosis. Since acidification will have the benefits of increased CO2 and will reach nowhere near such low pH levels as those extremes tested here, it is proposed that ocean acidification via increased dissolution of CO2 into our oceans will have no impact on the photosynthetic production of symbiotic cnidarians. Indeed, it is entirely likely that increased CO2 will add some benefit to the usually carbon-limited symbiotic zooxanthellae. Ocean acidification is not likely to benefit corals however, with compromised calcification rates likely to undermine the viability of the coral. Symbiotic sea anemones, which do not bio-mineralise CaCO3, are better placed to take advantage of the increased CO2 as we move toward more acidic oceans.</p>


Sign in / Sign up

Export Citation Format

Share Document