Faculty Opinions recommendation of Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a novel source of residual viremia in patients on antiretroviral therapy.

Author(s):  
Ariberto Fassati
2009 ◽  
Vol 83 (17) ◽  
pp. 8470-8481 ◽  
Author(s):  
Timothy P. Brennan ◽  
John O. Woods ◽  
Ahmad R. Sedaghat ◽  
Janet D. Siliciano ◽  
Robert F. Siliciano ◽  
...  

ABSTRACT Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.


2006 ◽  
Vol 80 (13) ◽  
pp. 6441-6457 ◽  
Author(s):  
Justin R. Bailey ◽  
Ahmad R. Sedaghat ◽  
Tara Kieffer ◽  
Timothy Brennan ◽  
Patricia K. Lee ◽  
...  

ABSTRACT Antiretroviral therapy can reduce human immunodeficiency virus type 1 (HIV-1) viremia to below the detection limit of ultrasensitive clinical assays (50 copies of HIV-1 RNA/ml). However, latent HIV-1 persists in resting CD4+ T cells, and low residual levels of free virus are found in the plasma. Limited characterization of this residual viremia has been done because of the low number of virions per sample. Using intensive sampling, we analyzed residual viremia and compared these viruses to latent proviruses in resting CD4+ T cells in peripheral blood. For each patient, we found some viruses in the plasma that were identical to viruses in resting CD4+ T cells by pol gene sequencing. However, in a majority of patients, the most common viruses in the plasma were rarely found in resting CD4+ T cells even when the resting cell compartment was analyzed with assays that detect replication-competent viruses. Despite the large diversity of pol sequences in resting CD4+ T cells, the residual viremia was dominated by a homogeneous population of viruses with identical pol sequences. In the most extensively studied case, a predominant plasma sequence was also found in analysis of the env gene, and linkage by long-distance reverse transcriptase PCR established that these predominant plasma sequences represented a single predominant plasma virus clone. The predominant plasma clones were released for months to years without evident sequence change. Thus, in some patients on antiretroviral therapy, the major mechanism for residual viremia involves prolonged production of a small number of viral clones without evident evolution, possibly by cells other than circulating CD4+ T cells.


Virology ◽  
2002 ◽  
Vol 293 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Haruko Horikoshi ◽  
Masanobu Kinomoto ◽  
Takeshi Kurosu ◽  
Satoshi Komoto ◽  
Miki Shiraga ◽  
...  

2004 ◽  
Vol 78 (17) ◽  
pp. 9105-9114 ◽  
Author(s):  
Kara G. Lassen ◽  
Justin R. Bailey ◽  
Robert F. Siliciano

ABSTRACT A stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting memory CD4+ T cells presents a barrier to eradication of the infection even in patients on highly active antiretroviral therapy. Potential mechanisms for latency include inaccessibility of the integrated viral genome, absence of key host transcription factors, premature termination of HIV-1 RNAs, and abnormal splicing patterns. To differentiate among these mechanisms, we isolated extremely pure populations of resting CD4+ T cells from patients on highly active antiretroviral therapy. These cells did not produce virus but retained the capacity to do so if appropriately stimulated. Products of HIV-1 transcription were examined in purified resting CD4+ T cells. Although short, prematurely terminated HIV-1 transcripts have been suggested as a marker for latently infected cells, the production of short transcripts had not been previously demonstrated in purified populations of resting CD4+ T cells. By separating RNA into polyadenylated and nonpolyadenylated fractions, we showed that resting CD4+ T cells from patients on highly active antiretroviral therapy produce abortive transcripts that lack a poly(A) tail and that terminate prior to nucleotide 181. Short transcripts dominated the pool of total HIV-1 transcripts in resting CD4+ T cells. Processive, polyadenylated HIV-1 mRNAs were also present at a low level. Both unspliced and multiply spliced forms were found. Taken together, these results show that the nonproductive nature of the infection in resting CD4+ T cells from patients on highly active antiretroviral therapy is not due to absolute blocks at the level of either transcriptional initiation or elongation but rather relative inefficiencies at multiple steps.


2006 ◽  
Vol 80 (15) ◽  
pp. 7645-7657 ◽  
Author(s):  
Keyang Chen ◽  
Jialing Huang ◽  
Chune Zhang ◽  
Sophia Huang ◽  
Giuseppe Nunnari ◽  
...  

ABSTRACT The interferon (IFN) system, including various IFNs and IFN-inducible gene products, is well known for its potent innate immunity against wide-range viruses. Recently, a family of cytidine deaminases, functioning as another innate immunity against retroviral infection, has been identified. However, its regulation remains largely unknown. In this report, we demonstrate that through a regular IFN-α/β signal transduction pathway, IFN-α can significantly enhance the expression of apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) in human primary resting but not activated CD4 T cells and the amounts of APOBEC3G associated with a low molecular mass. Interestingly, short-time treatments of newly infected resting CD4 T cells with IFN-α will significantly inactivate human immunodeficiency virus type 1 (HIV-1) at its early stage. This inhibition can be counteracted by APOBEC3G-specific short interfering RNA, indicating that IFN-α-induced APOBEC3G plays a key role in mediating this anti-HIV-1 process. Our data suggest that APOBEC3G is also a member of the IFN system, at least in resting CD4 T cells. Given that the IFN-α/APOBEC3G pathway has potent anti-HIV-1 capability in resting CD4 T cells, augmentation of this innate immunity barrier could prevent residual HIV-1 replication in its native reservoir in the post-highly active antiretroviral therapy era.


Sign in / Sign up

Export Citation Format

Share Document