Faculty Opinions recommendation of Nucleotide polymorphism at a gene (Pgi) under balancing selection in a butterfly metapopulation.

Author(s):  
Ary Hoffmann
2009 ◽  
Vol 27 (2) ◽  
pp. 267-281 ◽  
Author(s):  
C. W. Wheat ◽  
C. R. Haag ◽  
J. H. Marden ◽  
I. Hanski ◽  
M. J. Frilander

Genetics ◽  
1999 ◽  
Vol 153 (3) ◽  
pp. 1423-1434 ◽  
Author(s):  
Dmitry A Filatov ◽  
Deborah Charlesworth

Abstract A study of DNA polymorphism and divergence was conducted for the cytosolic phosphoglucose isomerase (PGI:E.C.5.3.1.9) gene of five species of the mustard genus Leavenworthia: Leavenworthia stylosa, L. alabamica, L. crassa, L. uniflora, and L. torulosa. Sequences of an internal 2.3-kb PgiC gene region spanning exons 6–16 were obtained from 14 L. stylosa plants from two natural populations and from one to several plants for each of the other species. The level of nucleotide polymorphism in L. stylosa PgiC gene was quite high (π = 0.051, θ = 0.052). Although recombination is estimated to be high in this locus, extensive haplotype structure was observed for the entire 2.3-kb region. The L. stylosa sequences fall into at least two groups, distinguished by the presence of several indels and nucleotide substitutions, and one of the three charge change nucleotide replacements within the region sequenced correlates with the haplotypes. The differences between the haplotypes are older than between the species, and the haplotypes are still segregating in at least two of five species studied. There is no evidence of recent or ancient population subdivision that could maintain distinct haplotypes. The age of the haplotypes and the results of Kelly's ZnS and Wall's B and Q tests with recombination suggest that the haplotypes are maintained due to balancing selection at or near this locus.


Author(s):  
Dương Thanh Thủy ◽  
Taiichiro Ookawa

The sensory and functional properties of rice are predominantly associated with its amylose content. Granule-bound starch synthase (GBSS) encoded by the Waxy (Wx) gene determines the synthesis of amylose, while starch branching enzymes encoded by Sbe genes are involved in the formation of amylopectin. Some studies have demonstrated that Wx gene is the major controller of amylose content but there are one or more modifying genes affecting the amylose content. Three markers,  microsatellite, Single – nucleotide – polymorphism (G/T SNP) in Wx gene and Single – nucleotide – polymorphism (T/C SNP) in Sbe1 gene, were tested for their association with amylose content using sixty-nine  rice accessions from twenty countries. Of the three markers, two markers in Wx gene are significantly associated with amylose content. The combination of two markers in Wx gene (haplotypes) explained 83.8% of the variation in amylose content and discriminated the three market classes of glutinous, low, intermediate and high amylose content of rice from each other. And T/C SNP in Sbe1 locus was not a suitable marker for amylose content. Keywords: marker, amylose content, Waxy gene.


Sign in / Sign up

Export Citation Format

Share Document