haplotype structure
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 23)

H-INDEX

37
(FIVE YEARS 3)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009568
Author(s):  
Anju Giri ◽  
Merritt Khaipho-Burch ◽  
Edward S. Buckler ◽  
Guillaume P. Ramstein

Genomic prediction typically relies on associations between single-site polymorphisms and traits of interest. This representation of genomic variability has been successful for predicting many complex traits. However, it usually cannot capture the combination of alleles in haplotypes and it has generated little insight about the biological function of polymorphisms. Here we present a novel and cost-effective method for imputing cis haplotype associated RNA expression (HARE), studied their transferability across tissues, and evaluated genomic prediction models within and across populations. HARE focuses on tightly linked cis acting causal variants in the immediate vicinity of the gene, while excluding trans effects from diffusion and metabolism. Therefore, HARE estimates were more transferrable across different tissues and populations compared to measured transcript expression. We also showed that HARE estimates captured one-third of the variation in gene expression. HARE estimates were used in genomic prediction models evaluated within and across two diverse maize panels–a diverse association panel (Goodman Association panel) and a large half-sib panel (Nested Association Mapping panel)–for predicting 26 complex traits. HARE resulted in up to 15% higher prediction accuracy than control approaches that preserved haplotype structure, suggesting that HARE carried functional information in addition to information about haplotype structure. The largest increase was observed when the model was trained in the Nested Association Mapping panel and tested in the Goodman Association panel. Additionally, HARE yielded higher within-population prediction accuracy as compared to measured expression values. The accuracy achieved by measured expression was variable across tissues, whereas accuracy by HARE was more stable across tissues. Therefore, imputing RNA expression of genes by haplotype is stable, cost-effective, and transferable across populations.


Cytokine ◽  
2021 ◽  
pp. 155489
Author(s):  
Maria Paximadis ◽  
Anabela C.P. Picton ◽  
Dhriti Sengupta ◽  
Michele Ramsay ◽  
Adrian Puren ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 964
Author(s):  
Emanuela Pira ◽  
Giuseppe Massimo Vacca ◽  
Maria Luisa Dettori ◽  
Gianpiera Piras ◽  
Massimiliano Moro ◽  
...  

One hundred and eighty Anglo-Arabian horses running 1239 races were sampled for the present study. DNA was extracted from the blood and myostatin gene, MSTN, was genotyped. Moreover, prizes won and places were achieved for the 1239 races to perform association analyses between the different genotypes and sport traits. Two SNPs already reported in previous studies regarding the Thoroughbred breed, rs69472472 and rs397152648, were revealed as polymorphic. The linkage disequilibrium analysis investigating the haplotype structure of MSTN did not evidence any association block. Polymorphism at SNP rs397152648, previously known as g.66493737 T>C, significantly influenced sport traits, with heterozygous horses TC showing better results than homozygotes TT. The portion of variance due to the random effect of the individual animal, and the other phenotypic effects of sex, percentage of Arabian blood and race distance, computed together with the genotype at MSTN in the statistical models, exerted a significant influence. Hence, this information is useful to improve knowledge of the genetic profile of Anglo-Arabian horses and a possible selection for better sport performance.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yukie Takeuchi ◽  
Sogo Nishio ◽  
Shingo Terakami ◽  
Norio Takada ◽  
Hidenori Kato ◽  
...  

Author(s):  
Rajeeva Musunuri ◽  
Kanika Arora ◽  
André Corvelo ◽  
Minita Shah ◽  
Jennifer Shelton ◽  
...  

Abstract Summary We present a new version of the popular somatic variant caller, Lancet, that supports the analysis of linked-reads sequencing data. By seamlessly integrating barcodes and haplotype read assignments within the colored De Bruijn graph local-assembly framework, Lancet computes a barcode-aware coverage and identifies variants that disagree with the local haplotype structure. Availability and implementation Lancet is implemented in C++ and available for academic and non-commercial research purposes as an open-source package at https://github.com/nygenome/lancet. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Heather Manching ◽  
Randall J Wisser

Abstract Motivation Ancestral haplotype maps provide useful information about genomic variation and insights into biological processes. Reconstructing the descendent haplotype structure of homologous chromosomes, particularly for large numbers of individuals, can help with characterizing the recombination landscape, elucidating genotype-to-phenotype relationships, improving genomic predictions and more. Inferring haplotype maps from sparse genotype data is an efficient approach to whole-genome haplotyping, but this is a non-trivial problem. A standardized approach is needed to validate whether haplotype reconstruction software, conceived population designs and existing data for a given population provides accurate haplotype information for further inference. Results We introduce SPEARS, a pipeline for the simulation-based appraisal of genome-wide haplotype maps constructed from sparse genotype data. Using a specified pedigree, the pipeline generates virtual genotypes (known data) with genotyping errors and missing data structure. It then proceeds to mimic analysis in practice, capturing sources of error due to genotyping, imputation and haplotype inference. Standard metrics allow researchers to assess different population designs and which features of haplotype structure or regions of the genome are sufficiently accurate for analysis. Haplotype maps for 1000 outcross progeny from a multi-parent population of maize are used to demonstrate SPEARS. Availabilityand implementation SPEARS, the protocol and suite of scripts, are publicly available under an MIT license at GitHub (https://github.com/maizeatlas/spears).. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Rajeeva Musunuri ◽  
Kanika Arora ◽  
André Corvelo ◽  
Minita Shah ◽  
Jennifer Shelton ◽  
...  

AbstractSummaryWe present a new version of the popular somatic variant caller, Lancet, that supports the analysis of linked-reads sequencing data. By seamlessly integrating barcodes and haplotype read assignments within the colored De Bruijn graph local-assembly framework, Lancet computes a barcode-aware coverage and identifies variants that disagree with the local haplotype structure.Availability and ImplementationLancet is implemented in C++ and is available for academic and non-commercial research purposes as an open-source package at https://github.com/nygenome/[email protected]


Sign in / Sign up

Export Citation Format

Share Document