Faculty Opinions recommendation of Running with the Red Queen: host-parasite coevolution selects for biparental sex.

Author(s):  
Eric Haag
2018 ◽  
Author(s):  
Elizabeth L. Anzia ◽  
Jomar F. Rabajante

AbstractWinnerless coevolution of hosts and parasites could exhibit Red Queen dynamics, which is characterized by parasite-driven cyclic switching of expressed host phenotypes. We hypothesize that the application of antibiotics to suppress the reproduction of parasites can provide opportunity for the hosts to escape such winnerless coevolution. Here, we formulate a minimal mathematical model of host-parasite interaction involving multiple host phenotypes that are targeted by adapting parasites. Our model predicts the levels of antibiotic effectiveness that can steer the parasite-driven cyclic switching of host phenotypes (heteroclinic oscillations) to a stable equilibrium of host survival. Our simulations show that uninterrupted application of antibiotic with high-level effectiveness (> 85%) is needed to escape the Red Queen dynamics. Intermittent and low level of antibiotic effectiveness are indeed useless to stop host-parasite coevolution. This study can be a guide in designing good practices and protocols to minimize risk of further progression of parasitic infections.


2016 ◽  
Vol 2 (3) ◽  
pp. e1501548 ◽  
Author(s):  
Jomar F. Rabajante ◽  
Jerrold M. Tubay ◽  
Hiromu Ito ◽  
Takashi Uehara ◽  
Satoshi Kakishima ◽  
...  

Interactions between hosts and parasites have been hypothesized to cause winnerless coevolution, called Red Queen dynamics. The canonical Red Queen dynamics assume that all interacting genotypes of hosts and parasites undergo cyclic changes in abundance through negative frequency-dependent selection, which means that any genotype could become frequent at some stage. However, this prediction cannot explain why many rare genotypes stay rare in natural host-parasite systems. To investigate this, we build a mathematical model involving multihost and multiparasite genotypes. In a deterministic and controlled environment, Red Queen dynamics occur between two genotypes undergoing cyclic dominance changes, whereas the rest of the genotypes remain subordinate for long periods of time in phase-locked synchronized dynamics with low amplitude. However, introduction of stochastic noise in the model might allow the subordinate cyclic host and parasite types to replace dominant cyclic types as new players in the Red Queen dynamics. The factors that influence such evolutionary switching are interhost competition, specificity of parasitism, and degree of stochastic noise. Our model can explain, for the first time, the persistence of rare, hardly cycling genotypes in populations (for example, marine microbial communities) undergoing host-parasite coevolution.


2017 ◽  
Vol 114 (27) ◽  
pp. E5396-E5405 ◽  
Author(s):  
Carl Veller ◽  
Laura K. Hayward ◽  
Christian Hilbe ◽  
Martin A. Nowak

In antagonistic symbioses, such as host–parasite interactions, one population’s success is the other’s loss. In mutualistic symbioses, such as division of labor, both parties can gain, but they might have different preferences over the possible mutualistic arrangements. The rates of evolution of the two populations in a symbiosis are important determinants of which population will be more successful: Faster evolution is thought to be favored in antagonistic symbioses (the “Red Queen effect”), but disfavored in certain mutualistic symbioses (the “Red King effect”). However, it remains unclear which biological parameters drive these effects. Here, we analyze the effects of the various determinants of evolutionary rate: generation time, mutation rate, population size, and the intensity of natural selection. Our main results hold for the case where mutation is infrequent. Slower evolution causes a long-term advantage in an important class of mutualistic interactions. Surprisingly, less intense selection is the strongest driver of this Red King effect, whereas relative mutation rates and generation times have little effect. In antagonistic interactions, faster evolution by any means is beneficial. Our results provide insight into the demographic evolution of symbionts.


Evolution ◽  
2018 ◽  
Vol 72 (3) ◽  
pp. 715-716
Author(s):  
María Martín-Peciña ◽  
Carolina Osuna-Mascaró

2019 ◽  
Author(s):  
Sang Woo Park ◽  
Benjamin M Bolker

AbstractSexual reproduction persists in nature despite its large cost. The Red Queen Hypothesis postulates that parasite pressure maintains sexual reproduction in the host population by selecting for the ability to produce rare genotypes that are resistant to infection. Mathematical models have been used to lay theoretical foundations for the hypothesis; empirical studies have confirmed these predictions. For example, Lively used a simple host-parasite model to predict that the frequency of sexual hosts should be positively correlated with the prevalence of infection. Lively et al. later confirmed the prediction through numerous field studies of snail-trematode systems in New Zealand. In this study, we fit a simple metapopulation host-parasite coevolution model to three data sets, each representing a different snail-trematode system, by matching the observed prevalence of sexual reproduction and trematode infection among hosts. Using the estimated parameters, we perform a power analysis to test the feasibility of observing the positive correlation predicted by Lively. We discuss anomalies in the data that are poorly explained by the model and provide practical guidance to both modelers and empiricists. Overall, our study suggests that a simple Red Queen model can only partially explain the observed relationships between parasite infection and the maintenance of sexual reproduction.


2018 ◽  
Vol 5 (9) ◽  
pp. 180693 ◽  
Author(s):  
Elizabeth L. Anzia ◽  
Jomar F. Rabajante

Winnerless coevolution of hosts and parasites could exhibit Red Queen dynamics, which is characterized by parasite-driven cyclic switching of expressed host phenotypes. We hypothesize that the application of antibiotics to suppress the reproduction of parasites can provide an opportunity for the hosts to escape such winnerless coevolution. Here, we formulate a minimal mathematical model of host–parasite interaction involving multiple host phenotypes that are targeted by adapting parasites. Our model predicts the levels of antibiotic effectiveness that can steer the parasite-driven cyclic switching of host phenotypes (oscillations) to a stable equilibrium of host survival. Our simulations show that uninterrupted application of antibiotic with high-level effectiveness (greater than 85%) is needed to escape the Red Queen dynamics. Interrupted and low level of antibiotic effectiveness are indeed useless to stop host–parasite coevolution. This study can be a guide in designing good practices and protocols to minimize the risk of further progression of parasitic infections.


Science ◽  
2011 ◽  
Vol 333 (6039) ◽  
pp. 216-218 ◽  
Author(s):  
L. T. Morran ◽  
O. G. Schmidt ◽  
I. A. Gelarden ◽  
R. C. Parrish ◽  
C. M. Lively

Sign in / Sign up

Export Citation Format

Share Document