Faculty Opinions recommendation of Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3-p23.

Author(s):  
Susan Bates
Genomics ◽  
1993 ◽  
Vol 18 (2) ◽  
pp. 355-359 ◽  
Author(s):  
Samuel S. Chong ◽  
Kristleifur Kristjansson ◽  
Huda Y. Zoghbi ◽  
Mark R. Hughes

1990 ◽  
Vol 258 (2) ◽  
pp. F356-F363 ◽  
Author(s):  
G. A. Quamme

The influence of pH on sodium-phosphate cotransport was determined in brush-border membrane vesicles (BBMV) isolated from outer cortical and outer medullary tissue of porcine kidneys. Two transport systems are apparent in outer cortical brush-border vesicles, and one process is apparent in outer medullary vesicles at all pH values. The apparent maximum uptake rate (Vmax) of the low-affinity system in outer cortex vesicles decreased from 8.3 +/- 1.7 to 3.2 +/- 0.05 nmol.mg protein-1.min-1 with pH change of 8.0 to 6.0, and the high-affinity process changed from 1.3 +/- 0.2 to 0.1 +/- 0.01 nmol.mg protein-1.min-1. The respective affinity values (Km) also decreased 5.5 +/- 0.9 to 0.6 +/- 0.01 mM and 0.08 +/- 0.005 to 0.01 +/- 0.005 mM, respectively, with acidification. In outer medullary vesicles a decrease in pH diminished the apparent Km, 0.28 +/- 0.03 to 0.02 +/- 0.003 mM, and mean Vmax from 3.0 +/- 0.07 to 0.5 +/- 0.1 nmol.mg protein-1.min-1. The mean KNaD values were 22.1 +/- 4.2 mM in outer cortical vesicles (low-affinity system) and 58.7 +/- 7.2 mM in outer medullary vesicles (high-affinity system) and were not altered by pH, suggesting that H+ does not affect the sodium interactive site. The data suggest that the vesicles prepared from outer cortical and outer medullary tissue possess distinctive sodium-phosphate transporters that are sensitive to external H+ concentrations.


Nature ◽  
1990 ◽  
Vol 347 (6291) ◽  
pp. 402-406 ◽  
Author(s):  
Hartmut Luecke ◽  
Florante A. Quiocho

1997 ◽  
Vol 323 (2) ◽  
pp. 401-408 ◽  
Author(s):  
Yansen XIAO ◽  
Christian J.-C. BOYER ◽  
Éric VINCENT ◽  
André DUGRÉ ◽  
Vincent VACHON ◽  
...  

The rat renal brush border membrane sodium/phosphate co-transporter NaPi-2 was analysed in Western blots with polyclonal antibodies raised against its N-terminal and C-terminal segments. Under reducing conditions, proteins of 45–49 and 70–90 kDa (p45 and p70) were detected with N-terminal antibodies, and proteins of 40 and 70–90 kDa (p40 and p70) were detected with C-terminal antibodies. p40 and p45 apparently result from a post-translational cleavage of NaPi-2 but remain linked through one or more disulphide bonds. Glycosidase digestion showed that both polypeptides are glycosylated; the cleavage site could thus be located between Asn-298 and Asn-328, which have been shown to constitute the only two N-glycosylated residues in NaPi-2. In the absence of reducing agents, both N-terminal and C-terminal antibodies detected p70 and a protein of 180 kDa (p180), suggesting the presence of p70 dimers. Much higher concentrations of β-mercaptoethanol were required to produce a given effect in intact membrane vesicles than in solubilized proteins, indicating that the affected disulphide bonds are not exposed at the surface of the co-transporter. Phosphate transport activity decreased with increasing concentrations of reducing agents [β-mercaptoethanol, dithiothreitol and tris-(2-carboxyethyl)phosphine] and was linearly correlated with the amount of p180 detected. The target sizes estimated from the radiation-induced loss of intensity of p40, p70 and p180 were all approx. 190 kDa, suggesting that NaPi-2 exists as an oligomeric protein in which the subunits are sufficiently close to one another to allow substantial energy transfer between the monomers. When protein samples were pretreated with β-mercaptoethanol [2.5% and 5% (v/v) to optimize the detection of p40 and p70] before irradiation, target sizes estimated from the radiation-induced loss of intensity of p40 and p70 were 74 and 92 kDa respectively, showing the presence of disulphide bridges in the molecular structure of NaPi-2.


Sign in / Sign up

Export Citation Format

Share Document