medullary tissue
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 4)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 473 (4) ◽  
pp. 623-631
Author(s):  
Bożena Bądzyńska ◽  
Iwona Baranowska ◽  
Janusz Sadowski

AbstractEarlier evidence from studies of rat hypertension models undermines the widespread view that the rate of renal medullary blood flow (MBF) is critical in control of arterial pressure (MAP). Here, we examined the role of MBF in rats that were normotensive, with modest short-lasting pressure elevation, or with overt established hypertension. The groups studied were anaesthetised Sprague-Dawley rats: (1) normotensive, (2) with acute i.v. norepinephrine-induced MAP elevation, and (3) with hypertension induced by unilateral nephrectomy followed by administration of deoxycorticosterone-acetate (DOCA) and 1% NaCl drinking fluid for 3 weeks. MBF was measured (laser-Doppler probe) and selectively increased using 4-h renal medullary infusion of bradykinin. MAP, renal excretion parameters and post-experiment medullary tissue osmolality and sodium concentration were determined. In the three experimental groups, baseline MAP was 117, 151 and 171 mmHg, respectively. Intramedullary bradykinin increased MBF by 45%, 65% and 70%, respectively, but this was not associated with a change in MAP. In normotensive rats a significant decrease in medullary tissue sodium was seen. The intramedullary bradykinin specifically increased renal excretion of water, sodium and total solutes in norepinephrine-treated rats but not in the two other groups. As previously shown in models of rat hypertension, in the normotensive rats and those with acute mild pressure elevation (resembling labile borderline human hypertension), 4-h renal medullary hyperperfusion failed to decrease MAP. Nor did it decrease in DOCA-salt model mimicking low-renin human hypertension. Evidently, within the 4-h observation, medullary perfusion was not a critical determinant of MAP in normotensive and hypertensive rats.


2019 ◽  
Vol 317 (6) ◽  
pp. F1483-F1502 ◽  
Author(s):  
Chang-Joon Lee ◽  
Bruce S. Gardiner ◽  
Roger G. Evans ◽  
David W. Smith

We have previously developed a three-dimensional computational model of oxygen transport in the renal medulla. In the present study, we used this model to quantify the sensitivity of renal medullary oxygenation to four of its major known determinants: medullary blood flow (MBF), medullary oxygen consumption rate (V̇o2,M), hemoglobin (Hb) concentration in the blood, and renal perfusion pressure. We also examined medullary oxygenation under special conditions of hydropenia, extracellular fluid volume expansion by infusion of isotonic saline, and hemodilution during cardiopulmonary bypass. Under baseline (normal) conditions, the average medullary tissue Po2 predicted for the whole renal medulla was ~30 mmHg. The periphery of the interbundle region in the outer medulla was identified as the most hypoxic region in the renal medulla, which demonstrates that the model prediction is qualitatively accurate. Medullary oxygenation was most sensitive to changes in renal perfusion pressure followed by Hb, MBF, and V̇o2,M, in that order. The medullary oxygenation also became sensitized by prohypoxic changes in other parameters, leading to a greater fall in medullary tissue Po2 when multiple parameters changed simultaneously. Hydropenia did not induce a significant change in medullary oxygenation compared with the baseline state, while volume expansion resulted in a large increase in inner medulla tissue Po2 (by ~15 mmHg). Under conditions of cardiopulmonary bypass, the renal medulla became severely hypoxic, due to hemodilution, with one-third of the outer stripe of outer medulla tissue having a Po2 of <5 mmHg.


2019 ◽  
Vol 317 (5) ◽  
pp. F1189-F1200 ◽  
Author(s):  
Md Mahbub Ullah ◽  
Connie P. C. Ow ◽  
Lucinda M. Hilliard Krause ◽  
Roger G. Evans

To assess whether renal hypoxia is an early event in adenine-induced chronic kidney disease, adenine (100 mg) or its vehicle was administered to male Sprague-Dawley rats by daily oral gavage for 7 days. Kidney oxygenation was assessed by 1) blood oximetry and Clark electrode in thiobutabarbital-anesthetized rats, 2) radiotelemetry in unanesthetized rats, and 3) expression of hypoxia-inducible factor (HIF)-1α and HIF-2α protein. After 7 days of treatment, under anesthesia, renal O2 delivery was 51% less, whereas renal O2 consumption was 65% less, in adenine-treated rats than in vehicle-treated rats. Tissue Po2 measured by Clark electrode was similar in the renal cortex but 44% less in the medulla of adenine-treated rats than in that of vehicle-treated rats. In contrast, in unanesthetized rats, both cortical and medullary tissue Po2 measured by radiotelemetry remained stable across 7 days of adenine treatment. Notably, anesthesia and laparotomy led to greater reductions in medullary tissue Po2 measured by radiotelemetry in rats treated with adenine (37%) than in vehicle-treated rats (16%), possibly explaining differences between our observations with Clark electrodes and radiotelemetry. Renal expression of HIF-1α was less after 7 days of adenine treatment than after vehicle treatment, whereas expression of HIF-2α did not differ significantly between the two groups. Renal dysfunction was evident after 7 days of adenine treatment, with glomerular filtration rate 65% less and serum creatinine concentration 183% greater in adenine-treated rats than in vehicle-treated rats. Renal cortical tissue hypoxia may not precede renal dysfunction in adenine-induced chronic kidney disease and so may not be an early pathological feature in this model.


2019 ◽  
Vol 317 (2) ◽  
pp. R232-R239 ◽  
Author(s):  
Naoya Iguchi ◽  
Yugeesh R. Lankadeva ◽  
Trevor A. Mori ◽  
Eduardo A. Osawa ◽  
Salvatore L. Cutuli ◽  
...  

In experimental sepsis, the rapid development of renal medullary hypoxia precedes the development of acute kidney injury (AKI) and may contribute to its pathogenesis. We investigated whether inhibiting active sodium transport and oxygen consumption in the medullary thick ascending limb with furosemide attenuates the medullary hypoxia in experimental septic AKI. Sheep were instrumented with flow probes on the pulmonary and renal arteries and fiber optic probes to measure renal cortical and medullary perfusion and oxygen tension (Po2). Sepsis and AKI were induced by infusion of live Escherichia coli. At 24 h of sepsis there were significant decreases in renal medullary tissue perfusion (1,332 ± 233 to 698 ± 159 blood perfusion units) and Po2 (44 ± 6 to 19 ± 6 mmHg) (both P < 0.05). By 5 min after intravenous administration of furosemide (20 mg), renal medullary Po2 increased to 43 ± 6 mmHg and remained at this normal level for 8 h. Furosemide caused transient increases in fractional excretion of sodium and creatinine clearance, but medullary perfusion, renal blood flow, and renal oxygen delivery were unchanged. Urinary F2-isoprostanes, an index of oxidative stress, were not significantly changed at 24 h of sepsis but tended to transiently decrease after furosemide treatment. In septic AKI, furosemide rapidly restored medullary Po2 to preseptic levels. This effect was not accompanied by changes in medullary perfusion or renal oxygen delivery but was accompanied by a transient increase in fractional sodium excretion, implying decreased oxygen consumption as a mechanism.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Weili Wang ◽  
Junping Hu ◽  
Pin-Lan Li ◽  
Justin L Poklis ◽  
Ningjun Li

We have previously shown that sphigosine-1-phosphate (S1P) produces natriuretic effects via activation of S1P receptor 1 in the renal medulla and that this natriuretic effect may be through inhibition of epithelial sodium channel. The present study examined the expression of the enzymes that produce S1P in the renal medullary tissue and tested the hypothesis that angiotensin II (ANG II) reduces the expression of S1P-producing enzyme and thereby the levels of S1P in the renal medulla. Male adult C56BL/6 mice, 10-12 weeks old, were treated with a low salt diet (LS, 0.4%), high salt diet (HS, 4% NaCl) or HS + ANG II (600ng/kg/min, S.C.) for 10 days. A high salt diet increased the level of S1P, whereas ANG II significantly inhibited the HS-induced increase of S1P levels in the renal medullary tissue. The levels of S1P were 6.6 ± 0.34, 11.4 ± 1.33 and 3.5 ± 0.49 pmol/mg of tissue in LS, HS and HS + ANG II group, respectively. There were no difference in the levels of sphingosine kinase 1 (SPHK1), the enzyme that produces S1P by phosphorylating sphingosine, among the different groups of mice by Western blot analysis. However, a high salt diet increased the protein levels of acid ceramidase (ACDase), an upstream enzyme that produces sphingosine, the substrate for SPHK1. This HS-induced increase in ACDase was inhibited by ANG II. The relative protein levels of ACDase were 1.0 ± 0.07, 1.4 ± 0.07 and 0.17 ± 0.11 in LS, HS and HS + ANG II group, respectively. These results demonstrated that a high salt diet increased the levels of S1P in the renal medulla, probably by increasing the level of one of the S1P-producing enzymes ACDase, and that ANG II reduced the levels of ACDase and S1P in the renal medulla. Given the diuretic effect of S1P, ANG II-induced reduction of S1P production in the renal medulla may be a mechanism contributing to the sodium retention and hypertension associated with excessive ANG II. (Support: NIH grant HL89563)


2015 ◽  
Vol 43 (10) ◽  
pp. e431-e439 ◽  
Author(s):  
Paolo Calzavacca ◽  
Roger G. Evans ◽  
Michael Bailey ◽  
Rinaldo Bellomo ◽  
Clive N. May

2015 ◽  
Vol 308 (10) ◽  
pp. R832-R839 ◽  
Author(s):  
Paolo Calzavacca ◽  
Roger G. Evans ◽  
Michael Bailey ◽  
Yugeesh R. Lankadeva ◽  
Rinaldo Bellomo ◽  
...  

The role of renal cortical and medullary hypoxia in the development of acute kidney injury is controversial, partly due to a lack of techniques for the long-term measurement of intrarenal oxygenation and perfusion in conscious animals. We have, therefore, developed a methodology to chronically implant combination probes to chronically measure renal cortical and medullary tissue perfusion and oxygen tension (tPo2) in conscious sheep and evaluated their responsiveness and reliability. A transit-time flow probe and a vascular occluder were surgically implanted on the left renal artery. At the same operation, dual fiber-optic probes, comprising a fluorescence optode to measure tPo2 and a laser-Doppler probe to assess tissue perfusion, were inserted into the renal cortex and medulla. In recovered conscious sheep ( n = 8) breathing room air, mean 24-h cortical and medullary tPo2 were similar (31.4 ± 0.6 and 29.7 ± 0.7 mmHg, respectively). In the renal cortex and medulla, a 20% reduction in renal blood flow (RBF) decreased perfusion (14.6 ± 8.6 and 41.2 ± 8.5%, respectively) and oxygenation (48.1 ± 8.5 and 72.4 ± 8.5%, respectively), with greater decreases during a 50% reduction in RBF. At autopsy, minimal fibrosis was observed around the probes. In summary, we have developed a technique to chronically implant fiber-optic probes in the renal cortex and medulla for recording tissue perfusion and oxygenation over many days. In normal resting conscious sheep, cortical and medullary tPo2 were similar. The responses to and recovery from renal artery occlusion, together with the consistent measurements over a 24-h period, demonstrate the responsiveness and stability of the probes.


2014 ◽  
Vol 306 (9) ◽  
pp. F1026-F1038 ◽  
Author(s):  
Amany Abdelkader ◽  
Julie Ho ◽  
Connie P. C. Ow ◽  
Gabriela A. Eppel ◽  
Niwanthi W. Rajapakse ◽  
...  

Tissue hypoxia has been demonstrated, in both the renal cortex and medulla, during the acute phase of reperfusion after ischemia induced by occlusion of the aorta upstream from the kidney. However, there are also recent clinical observations indicating relatively well preserved oxygenation in the nonfunctional transplanted kidney. To test whether severe acute kidney injury can occur in the absence of widespread renal tissue hypoxia, we measured cortical and inner medullary tissue Po2 as well as total renal O2 delivery (Do2) and O2 consumption (V̇o2) during the first 2 h of reperfusion after 60 min of occlusion of the renal artery in anesthetized rats. To perform this experiment, we used a new method for measuring kidney Do2 and V̇o2 that relies on implantation of fluorescence optodes in the femoral artery and renal vein. We were unable to detect reductions in renal cortical or inner medullary tissue Po2 during reperfusion after ischemia localized to the kidney. This is likely explained by the observation that V̇o2 (−57%) was reduced by at least as much as Do2 (−45%), due to a large reduction in glomerular filtration (−94%). However, localized tissue hypoxia, as evidence by pimonidazole adduct immunohistochemistry, was detected in kidneys subjected to ischemia and reperfusion, particularly in, but not exclusive to, the outer medulla. Thus, cellular hypoxia, particularly in the outer medulla, may still be present during reperfusion even when reductions in tissue Po2 are not detected in the cortex or inner medulla.


2013 ◽  
Vol 20 (5) ◽  
pp. 705-716 ◽  
Author(s):  
Alessio Imperiale ◽  
Karim Elbayed ◽  
François-Marie Moussallieh ◽  
Nathalie Reix ◽  
Martial Piotto ◽  
...  

In this study, we i) assessed the metabolic profile of the normal adrenal cortex and medulla of adult human subjects by means of1H-high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy; ii) compared the biochemical profile of adenoma (Ad), adrenal cortical carcinoma (ACC), and pheochromocytoma (PCC) samples with that of healthy adrenal tissue samples; and iii) investigated the metabolic differences between ACCs and Ads as well as between ACCs and PCCs. Sixty-six tissue samples (13 adrenal cortical tissue, eight medullary tissue, 13 Ad, 12 ACC, and 20 PCC samples) were analyzed. Adrenaline and noradrenaline were undetectable in cortical samples representing the metabolic signature of the tissue derived from neural crest. Similarity between the metabolic profile of Ads and that of the normal adrenal cortex was shown. Inversely, ACC samples clearly made up a detached group exhibiting the typical stigmata of neoplastic tissue such as choline-containing compounds, biochemical markers of anaerobic processes, and increased glycolysis. Significantly higher levels of lactate, acetate, and total choline-containing compounds played a major role in the differentiation of ACCs from Ads. Moreover, the high fatty acid content of ACCs contributed to the cluster identification of ACCs. Of the 14 sporadic PCC samples, 12 exhibited predominant or exclusive noradrenaline secretion. The noradrenaline:adrenaline ratio was inverted in the normal medullary tissue samples. Multiple endocrine neoplasia type 2- and NF1-related PCC samples exhibited both adrenaline and noradrenaline secretion. In the von Hippel–Lindau disease-related PCC samples, only noradrenaline secretion was detected by HRMAS NMR spectroscopy. This study is one of the first applications of metabolomics to adrenal pathophysiology and it is the largest study to report HRMAS NMR data related to the adrenal cortex and adrenal cortical tumors.


Sign in / Sign up

Export Citation Format

Share Document