Faculty Opinions recommendation of Septin9 is involved in septin filament formation and cellular stability.

Author(s):  
Elias Spiliotis
2015 ◽  
Vol 26 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Katarina Akhmetova ◽  
Maxim Balasov ◽  
Richard P. H. Huijbregts ◽  
Igor Chesnokov

Septins belong to a family of polymerizing GTP-binding proteins that are important for cytokinesis and other processes that involve spatial organization of the cell cortex. We reconstituted a recombinant Drosophila septin complex and compared activities of the wild-type and several mutant septin complex variants both in vitro and in vivo. We show that Drosophila septin complex functions depend on the intact GTP-binding and/or hydrolysis domains of Pnut, Sep1, and Sep2. The presence of the functional C-terminal domain of septins is required for the integrity of the complex. Drosophila Orc6 protein, the smallest subunit of the origin recognition complex (ORC), directly binds to septin complex and facilitates septin filament formation. Orc6 forms dimers through the interactions of its N-terminal, TFIIB-like domains. This ability of the protein suggests a direct bridging role for Orc6 in stimulating septin polymerization in Drosophila. Studies reported here provide a functional dissection of a Drosophila septin complex and highlight the basic conserved and divergent features among metazoan septin complexes.


2011 ◽  
Vol 195 (5) ◽  
pp. 815-826 ◽  
Author(s):  
Moshe S. Kim ◽  
Carol D. Froese ◽  
Mathew P. Estey ◽  
William S. Trimble

Septins are filamentous guanosine triphosphatase–binding proteins that are required for cytokinesis in a wide range of organisms from yeast to man. Several septins, including SEPT9, have been found to be altered in cancers, but their roles in malignancy and cytokinesis remain unclear. It is known that they assemble into rod-shaped oligomeric complexes that join end-on-end to form filaments, but whether SEPT9 incorporates into these complexes and how it does so are unanswered questions. We used tandem affinity purification of mammalian septin complexes to show that SEPT9 occupies a terminal position in an octameric septin complex. A mutant SEPT9, which cannot self-associate, disrupted septin filament formation and resulted in late abscission defects during cytokinesis but did not affect septin-dependent steps earlier in mitosis. These data suggest that mammalian SEPT9 holds a terminal position in the septin octamers, mediating abscission-specific polymerization during cytokinesis.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Yashar Sadian ◽  
Christos Gatsogiannis ◽  
Csilla Patasi ◽  
Oliver Hofnagel ◽  
Roger S Goody ◽  
...  

Septins are guanine nucleotide-binding proteins that polymerize into filamentous and higher-order structures. Cdc42 and its effector Gic1 are involved in septin recruitment, ring formation and dissociation. The regulatory mechanisms behind these processes are not well understood. Here, we have used electron microscopy and cryo electron tomography to elucidate the structural basis of the Gic1-septin and Gic1-Cdc42-septin interaction. We show that Gic1 acts as a scaffolding protein for septin filaments forming long and flexible filament cables. Cdc42 in its GTP-form binds to Gic1, which ultimately leads to the dissociation of Gic1 from the filament cables. Surprisingly, Cdc42-GDP is not inactive, but in the absence of Gic1 directly interacts with septin filaments resulting in their disassembly. We suggest that this unanticipated dual function of Cdc42 is crucial for the cell cycle. Based on our results we propose a novel regulatory mechanism for septin filament formation and dissociation.


2014 ◽  
Vol 106 (2) ◽  
pp. 55a
Author(s):  
Elizabeth Booth ◽  
Eleanor Vane ◽  
Jeremy Thorner

2013 ◽  
Author(s):  
Yashar Sadian ◽  
Christos Gatsogiannis ◽  
Csilla Patasi ◽  
Oliver Hofnagel ◽  
Roger S Goody ◽  
...  

2011 ◽  
Vol 20 (4) ◽  
pp. 540-549 ◽  
Author(s):  
Michael A. McMurray ◽  
Aurelie Bertin ◽  
Galo Garcia ◽  
Lisa Lam ◽  
Eva Nogales ◽  
...  

2014 ◽  
Vol 106 (2) ◽  
pp. 168a
Author(s):  
Yashar Sadian ◽  
Christos Gatsogiannis ◽  
Csilla Patasi ◽  
Oliver Hofnagel ◽  
Roger S. Goody ◽  
...  

2011 ◽  
Vol 392 (8-9) ◽  
pp. 769-777 ◽  
Author(s):  
Annette Füchtbauer ◽  
Louise B. Lassen ◽  
Astrid B. Jensen ◽  
Jennifer Howard ◽  
Adán de Salas Quiroga ◽  
...  

Abstract Septin9 (Sept9) is a member of the filament-forming septin family of structural proteins and is associated with a variety of cancers and with hereditary neuralgic amyotrophy. We have generated mice with constitutive and conditional Sept9 knockout alleles. Homozygous deletion of Sept9 results in embryonic lethality around day 10 of gestation whereas mice homozygous for the conditional allele develop normally. Here we report the consequences of homozygous loss of Sept9 in immortalized murine embryonic fibroblasts. Proliferation rate was not changed but cells without Sept9 had an altered morphology compared to normal cells, particularly under low serum stress. Abnormal, fragmented, and multiple nuclei were more frequent in cells without Sept9. Cell migration, as measured by gap-filling and filter-invasion assays, was impaired, but individual cells did not move less than wild-type cells. Sept9 knockout cells showed a reduced resistance to hypo-osmotic stress. Stress fiber and vinculin staining at focal adhesion points was less prominent. Long septin filaments stained for Sept7 disappeared. Instead, staining was found in short, often curved filaments and rings. Furthermore, Sept7 was no longer localized to the mitotic spindle. Together, these data reveal the importance of Sept9 for septin filament formation and general cell stability.


Author(s):  
Bhanu Sood ◽  
Michael Pecht

Abstract Failures in printed circuit boards account for a significant percentage of field returns in electronic products and systems. Conductive filament formation is an electrochemical process that requires the transport of a metal through or across a nonmetallic medium under the influence of an applied electric field. With the advent of lead-free initiatives, boards are being exposed to higher temperatures during lead-free solder processing. This can weaken the glass-fiber bonding, thus enhancing conductive filament formation. The effect of the inclusion of halogen-free flame retardants on conductive filament formation in printed circuit boards is also not completely understood. Previous studies, along with analysis and examinations conducted on printed circuit boards with failure sites that were due to conductive filament formation, have shown that the conductive path is typically formed along the delaminated fiber glass and epoxy resin interfaces. This paper is a result of a year-long study on the effects of reflow temperatures, halogen-free flame retardants, glass reinforcement weave style, and conductor spacing on times to failure due to conductive filament formation.


Sign in / Sign up

Export Citation Format

Share Document