Faculty Opinions recommendation of Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85alpha Src homology-2 domains.

Author(s):  
Michele Pagano ◽  
Shafi Kuchay
2007 ◽  
Vol 35 (2) ◽  
pp. 242-244 ◽  
Author(s):  
H. Wu ◽  
Y. Yan ◽  
J.M. Backer

Class IA PI3Ks (phosphoinositide 3-kinases) regulate a wide range of cellular responses through the production of PI(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) in cellular membranes. They are activated by receptor tyrosine kinases, by Ras and Rho family GTPases, and in some cases by Gβγ subunits from trimeric G-proteins. Crystallographic studies on the related class IB PI3Kγ, and biochemical and structural studies on the class IA PI3Ks, have led to new insights into how these critical enzymes are regulated in normal cells and how mutations can lead to their constitutive activation in transformed cells. The present paper will discuss recent studies on the regulation of class I (p85/p110) PI3Ks, with a focus on the role of SH2 domains (Src homology 2 domains) in the p85 regulatory subunit in modulating PI3K activity.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3204-3210 ◽  
Author(s):  
JE Damen ◽  
AL Mui ◽  
L Puil ◽  
T Pawson ◽  
G Krystal

The erythropoietin receptor (EpR) belongs to a family of hematopoietin receptors whose members lack tyrosine kinase activity. Nonetheless, within minutes of binding Ep, a number of cellular proteins become transiently phosphorylated on tyrosine residues. One of these proteins, as we and others have shown previously, is the EpR itself. To identify the remaining protein substrates, we have examined the antiphosphotyrosine immunoprecipitates of lysates from Ba/F3 cells expressing high levels of cell surface EpRs. We now present data showing that, in response to Ep, the 85-Kd regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) becomes immunoprecipitable with antiphosphotyrosine antibodies. This appears to be due, in large part, to the specific association of PI 3-kinase with the tyrosine- phosphorylated EpR, either directly or through a 93- or 70-Kd tyrosine- phosphorylated intermediate. The activity of this EpR associated PI 3- kinase, assessed in anti-EpR immunoprecipitates, is maximal within 2 minutes of incubation with Ep and returns almost to baseline levels by 10 minutes. In vitro studies suggest that the interaction between PI 3- kinase and the activated EpR is mediated by the N- and C-terminal SH2 domains of p85 and tyrosine-phosphorylated motifs on the EpR.


1995 ◽  
Vol 15 (8) ◽  
pp. 4453-4465 ◽  
Author(s):  
S Pons ◽  
T Asano ◽  
E Glasheen ◽  
M Miralpeix ◽  
Y Zhang ◽  
...  

Phosphatidylinositol 3-kinase (PI-3 kinase) is implicated in the regulation of diverse cellular processes, including insulin-stimulated glucose transport. PI-3 kinase is composed of a 110-kDa catalytic subunit and an 85-kDa regulatory subunit. Here, we describe p55PIK, a new regulatory subunit that was isolated by screening expression libraries with tyrosine-phosphorylated insulin receptor substrate 1 (IRS-1). p55PIK is composed of a unique 30-residue NH2 terminus followed by a proline-rich motif and two Src homology 2 (SH2) domains with significant sequence identify to those in p85. p55PIK mRNA is expressed early during development, remains abundant in adult mouse brain and testis tissue, and is detectable in adult adipocytes and heart and kidney tissues. p55PIK forms a stable complex with p110, and it associates with IRS-1 during insulin stimulation. Moreover, the activated insulin receptor phosphorylates p55PIK in Sf9 cells, and insulin stimulates p55PIK phosphorylation in CHOIR/p55PIK cells. The unique features of p55PIK suggest that it is important in receptor signaling.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3204-3210 ◽  
Author(s):  
JE Damen ◽  
AL Mui ◽  
L Puil ◽  
T Pawson ◽  
G Krystal

Abstract The erythropoietin receptor (EpR) belongs to a family of hematopoietin receptors whose members lack tyrosine kinase activity. Nonetheless, within minutes of binding Ep, a number of cellular proteins become transiently phosphorylated on tyrosine residues. One of these proteins, as we and others have shown previously, is the EpR itself. To identify the remaining protein substrates, we have examined the antiphosphotyrosine immunoprecipitates of lysates from Ba/F3 cells expressing high levels of cell surface EpRs. We now present data showing that, in response to Ep, the 85-Kd regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) becomes immunoprecipitable with antiphosphotyrosine antibodies. This appears to be due, in large part, to the specific association of PI 3-kinase with the tyrosine- phosphorylated EpR, either directly or through a 93- or 70-Kd tyrosine- phosphorylated intermediate. The activity of this EpR associated PI 3- kinase, assessed in anti-EpR immunoprecipitates, is maximal within 2 minutes of incubation with Ep and returns almost to baseline levels by 10 minutes. In vitro studies suggest that the interaction between PI 3- kinase and the activated EpR is mediated by the N- and C-terminal SH2 domains of p85 and tyrosine-phosphorylated motifs on the EpR.


Sign in / Sign up

Export Citation Format

Share Document