scholarly journals The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase.

1995 ◽  
Vol 15 (8) ◽  
pp. 4453-4465 ◽  
Author(s):  
S Pons ◽  
T Asano ◽  
E Glasheen ◽  
M Miralpeix ◽  
Y Zhang ◽  
...  

Phosphatidylinositol 3-kinase (PI-3 kinase) is implicated in the regulation of diverse cellular processes, including insulin-stimulated glucose transport. PI-3 kinase is composed of a 110-kDa catalytic subunit and an 85-kDa regulatory subunit. Here, we describe p55PIK, a new regulatory subunit that was isolated by screening expression libraries with tyrosine-phosphorylated insulin receptor substrate 1 (IRS-1). p55PIK is composed of a unique 30-residue NH2 terminus followed by a proline-rich motif and two Src homology 2 (SH2) domains with significant sequence identify to those in p85. p55PIK mRNA is expressed early during development, remains abundant in adult mouse brain and testis tissue, and is detectable in adult adipocytes and heart and kidney tissues. p55PIK forms a stable complex with p110, and it associates with IRS-1 during insulin stimulation. Moreover, the activated insulin receptor phosphorylates p55PIK in Sf9 cells, and insulin stimulates p55PIK phosphorylation in CHOIR/p55PIK cells. The unique features of p55PIK suggest that it is important in receptor signaling.

Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3204-3210 ◽  
Author(s):  
JE Damen ◽  
AL Mui ◽  
L Puil ◽  
T Pawson ◽  
G Krystal

The erythropoietin receptor (EpR) belongs to a family of hematopoietin receptors whose members lack tyrosine kinase activity. Nonetheless, within minutes of binding Ep, a number of cellular proteins become transiently phosphorylated on tyrosine residues. One of these proteins, as we and others have shown previously, is the EpR itself. To identify the remaining protein substrates, we have examined the antiphosphotyrosine immunoprecipitates of lysates from Ba/F3 cells expressing high levels of cell surface EpRs. We now present data showing that, in response to Ep, the 85-Kd regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) becomes immunoprecipitable with antiphosphotyrosine antibodies. This appears to be due, in large part, to the specific association of PI 3-kinase with the tyrosine- phosphorylated EpR, either directly or through a 93- or 70-Kd tyrosine- phosphorylated intermediate. The activity of this EpR associated PI 3- kinase, assessed in anti-EpR immunoprecipitates, is maximal within 2 minutes of incubation with Ep and returns almost to baseline levels by 10 minutes. In vitro studies suggest that the interaction between PI 3- kinase and the activated EpR is mediated by the N- and C-terminal SH2 domains of p85 and tyrosine-phosphorylated motifs on the EpR.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3204-3210 ◽  
Author(s):  
JE Damen ◽  
AL Mui ◽  
L Puil ◽  
T Pawson ◽  
G Krystal

Abstract The erythropoietin receptor (EpR) belongs to a family of hematopoietin receptors whose members lack tyrosine kinase activity. Nonetheless, within minutes of binding Ep, a number of cellular proteins become transiently phosphorylated on tyrosine residues. One of these proteins, as we and others have shown previously, is the EpR itself. To identify the remaining protein substrates, we have examined the antiphosphotyrosine immunoprecipitates of lysates from Ba/F3 cells expressing high levels of cell surface EpRs. We now present data showing that, in response to Ep, the 85-Kd regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) becomes immunoprecipitable with antiphosphotyrosine antibodies. This appears to be due, in large part, to the specific association of PI 3-kinase with the tyrosine- phosphorylated EpR, either directly or through a 93- or 70-Kd tyrosine- phosphorylated intermediate. The activity of this EpR associated PI 3- kinase, assessed in anti-EpR immunoprecipitates, is maximal within 2 minutes of incubation with Ep and returns almost to baseline levels by 10 minutes. In vitro studies suggest that the interaction between PI 3- kinase and the activated EpR is mediated by the N- and C-terminal SH2 domains of p85 and tyrosine-phosphorylated motifs on the EpR.


1993 ◽  
Vol 13 (12) ◽  
pp. 7677-7688 ◽  
Author(s):  
P Hu ◽  
A Mondino ◽  
E Y Skolnik ◽  
J Schlessinger

Phosphatidylinositol 3-kinase (PI 3-kinase) has been implicated as a participant in signaling pathways regulating cell growth by virtue of its activation in response to various mitogenic stimuli. Here we describe the cloning of a novel and ubiquitously expressed human PI 3-kinase. The 4.8-kb cDNA encodes a putative translation product of 1,070 amino acids which is 42% identical to bovine PI 3-kinase and 28% identical to Vps34, a Saccharomyces cerevisiae PI 3-kinase involved in vacuolar protein sorting. Human PI 3-kinase is also similar to Tor2, a yeast protein required for cell cycle progression. Northern (RNA) analysis demonstrated expression of human PI 3-kinase in all tissues and cell lines tested. Protein synthesized from an epitope-tagged cDNA had intrinsic PI 3-kinase activity and associated with the adaptor 85-kDa subunit of PI 3-kinase (p85) in intact cells, as did endogenous human PI 3-kinase. Coprecipitation assays showed that a 187-amino-acid domain between the two src homology 2 domains of p85 mediates interaction with PI 3-kinase in vitro and in intact cells. These results demonstrate the existence of different PI 3-kinase isoforms and define a family of genes encoding distinct PI 3-kinase catalytic subunits that can associate with p85.


1995 ◽  
Vol 15 (10) ◽  
pp. 5403-5411 ◽  
Author(s):  
M J Quon ◽  
H Chen ◽  
B L Ing ◽  
M L Liu ◽  
M J Zarnowski ◽  
...  

Insulin stimulates glucose transport in insulin target tissues by recruiting glucose transporters (primarily GLUT4) from an intracellular compartment to the cell surface. Previous studies have demonstrated that insulin receptor tyrosine kinase activity and subsequent phosphorylation of insulin receptor substrate 1 (IRS-1) contribute to mediating the effect of insulin on glucose transport. We have now investigated the roles of 1-phosphatidylinositol 3-kinase (PI 3-kinase) and ras, two signaling proteins located downstream from tyrosine phosphorylation. Rat adipose cells were cotransfected with expression vectors that allowed transient expression of epitope-tagged GLUT4 and the other genes of interest. Overexpression of a mutant p85 regulatory subunit of PI 3-kinase lacking the ability to bind and activate the p110 catalytic subunit exerted a dominant negative effect to inhibit insulin-stimulated translocation of epitope-tagged GLUT4 to the cell surface. In addition, treatment of control cells with wortmannin (an inhibitor of PI 3-kinase) abolished the ability of insulin to recruit epitope-tagged GLUT4 to the cell surface. Thus, our data suggest that PI 3-kinase plays an essential role in insulin-stimulated GLUT4 recruitment in insulin target tissues. In contrast, over-expression of a constitutively active mutant of ras (L61-ras) resulted in high levels of cell surface GLUT4 in the absence of insulin that were comparable to levels seen in control cells treated with a maximally stimulating dose of insulin. However, wortmannin treatment of cells overexpressing L61-ras resulted in only a small decrease in the amount of cell surface GLUT4 compared with that of the same cells in the absence of wortmannin. Therefore, while activated ras is sufficient to recruit GLUT4 to the cell surface, it does so by a different mechanism that is probably not involved in the mechanism by which insulin stimulates GLUT4 translocation in physiological target tissues.


1994 ◽  
Vol 14 (9) ◽  
pp. 5929-5938 ◽  
Author(s):  
M Yoakim ◽  
W Hou ◽  
Z Songyang ◽  
Y Liu ◽  
L Cantley ◽  
...  

Phosphatidylinositol 3-kinase is an important element in both normal and oncogenic signal transduction. Polyomavirus middle T antigen transforms cells in a manner depending on association of its tyrosine 315 phosphorylation site with Src homology 2 (SH2) domains on the p85 subunit of the phosphatidylinositol 3-kinase. Both nonselective and site-directed mutagenesis have been used to probe the interaction of middle T with the N-terminal SH2 domain of p85. Most of the 24 mutants obtained showed reduced middle T binding. However, mutations that showed increased binding were also found. Comparison of middle T binding to that of the platelet-derived growth factor receptor showed that some mutations altered the specificity of recognition by the SH2 domain. Mutations altering S-393, D-394, and P-395 were shown to affect the ability of the SH2 domain to select peptides from a degenerate phosphopeptide library. These results focus attention on the role of the EF loop in the SH2 domain in determining binding selectivity at the third position after the phosphotyrosine.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3406-3413 ◽  
Author(s):  
Thamar B. van Dijk ◽  
Emile van den Akker ◽  
Martine Parren-van Amelsvoort ◽  
Hiroyuki Mano ◽  
Bob Löwenberg ◽  
...  

Stem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of phosphatidylinositol 3′-kinase (PI3-K) by cKit was previously shown to contribute to many SCF-induced cellular responses. Therefore, PI3-K-dependent signaling pathways activated by SCF were investigated. The PI3-K-dependent activation and phosphorylation of the tyrosine kinase Tec and the adapter molecule p62Dok-1 are reported. The study shows that Tec and Dok-1 form a stable complex with Lyn and 2 unidentified phosphoproteins of 56 and 140 kd. Both the Tec homology and the SH2 domain of Tec were identified as being required for the interaction with Dok-1, whereas 2 domains in Dok-1 appeared to mediate the association with Tec. In addition, Tec and Lyn were shown to phosphorylate Dok-1, whereas phosphorylated Dok-1 was demonstrated to bind to the SH2 domains of several signaling molecules activated by SCF, including Abl, CrkL, SHIP, and PLCγ-1, but not those of Vav and Shc. These findings suggest that p62Dok-1 may function as an important scaffold molecule in cKit-mediated signaling.


1998 ◽  
Vol 335 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Joëlle DUPONT ◽  
Michel DEROUET ◽  
Jean SIMON ◽  
Mohammed TAOUIS

The Src homology and collagen protein (Shc) is tyrosine phosphorylated in response to insulin; however, evidence for its interaction with insulin receptor (IR) in normal tissues is missing. Interactions between IR, Shc and regulatory subunits of the phosphatidylinositol 3´-kinase (PI 3´-kinase) were characterized in the present study in liver and muscles of chickens submitted to various nutritional states. A chicken liver Shc cDNA fragment encoding a 198 amino acid long fragment, including the phosphotyrosine binding domain was sequenced. It shows 89% homology with the corresponding human homologue. The amounts of the three Shc isoforms (66, 52 and 46 kDa) and Shc messenger were not altered by the nutritional state. Shc tyrosine phosphorylation was decreased by fasting in both liver and muscle. Importantly, Shc was immunoprecipitated by IR antibody (mostly the 52 kDa isoform) or by αIRS-1(mostly the 46 kDa isoform). IR–Shc association was decreased by fasting and restored by refeeding. In liver, αShc immunoprecipitated the three forms of regulatory subunits of PI 3´-kinase and a PI 3´-kinase activity which was decreased by fasting. In muscle, αShc immunoprecipitated only the p85 isoform; the associated PI 3´-kinase activity was not altered by the nutritional state. Conversely, in both tissues anti-p85 antibody precipitated only the 52 kDa Shc isoform. In liver, antibodies to insulin receptor substrate-1 (αIRS-1), Shc or IR immunoprecipitated the three regulatory subunits of PI 3´-kinase and an equal PI 3´-kinase activity, without any residual activity left in the supernatants, suggesting the presence of a large complex involving IR, IRS-1, Shc (mainly the 52 kDa isoform) and PI 3´-kinase activity. The presence of another complex containing IRS-1 and the 46 kDa Shc isoform, but no PI 3´-kinase activity, is suggested.


1998 ◽  
Vol 9 (5) ◽  
pp. 1093-1105 ◽  
Author(s):  
Leila Khamzina ◽  
Pierre Borgeat

The molecular mechanism of hepatic cell growth and differentiation is ill defined. In the present study, we examined the putative role of tyrosine phosphorylation in normal rat liver development and in an in vitro model, the α-fetoprotein-producing (AFP+) and AFP-nonproducing (AFP−) clones of the McA-RH 7777 rat hepatoma. We demonstrated in vivo and in vitro that the AFP+ phenotype is clearly associated with enhanced tyrosine phosphorylation, as assessed by immunoblotting and flow cytometry. Moreover, immunoprecipitation of proteins with anti-phosphotyrosine antibody showed that normal fetal hepatocytes expressed the same phosphorylation pattern as stable AFP+clones and likewise for adult hepatocytes and AFP− clones. The tyrosine phosphorylation of several proteins, including the β-subunit of the insulin receptor, insulin receptor substrate-1, p85 regulatory subunit of phosphatidylinositol-3-kinase, andras-guanosine triphosphatase-activating protein, was observed in AFP+ clones, whereas the same proteins were not phosphorylated in AFP− clones. We also observed that fetal hepatocytes and the AFP+ clones express 4 times more of the insulin receptor β-subunit compared with adult hepatocytes and AFP− clones and, accordingly, that these AFP+clones were more responsive to exogenous insulin in terms of protein tyrosine phosphorylation. Finally, growth rate in cells of AFP+ clones was higher than that measured in cells of AFP− clones, and inhibition of phosphatidylinositol-3-kinase by LY294002 and Wortmannin blocked insulin- and serum-stimulated DNA synthesis only in cells of AFP+ clones. These studies provide evidences in support of the hypothesis that signaling via insulin prevents hepatocyte differentiation by promoting fetal hepatocyte growth.


Sign in / Sign up

Export Citation Format

Share Document