Faculty Opinions recommendation of A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana.

Author(s):  
David G Oppenheimer
2015 ◽  
Vol 28 (1) ◽  
pp. 181-201 ◽  
Author(s):  
Naohiko Ohama ◽  
Kazuya Kusakabe ◽  
Junya Mizoi ◽  
Huimei Zhao ◽  
Satoshi Kidokoro ◽  
...  

2007 ◽  
Vol 53 (2) ◽  
pp. 264-274 ◽  
Author(s):  
Franziska Schramm ◽  
Jane Larkindale ◽  
Elke Kiehlmann ◽  
Arnab Ganguli ◽  
Gisela Englich ◽  
...  

2021 ◽  
Vol 34 (1) ◽  
pp. 61-78
Author(s):  
Nicholas Rutley ◽  
Laetitia Poidevin ◽  
Tirza Doniger ◽  
Richard L. Tillett ◽  
Abhishek Rath ◽  
...  

Abstract Key message Arabidopsis pollen transcriptome analysis revealed new intergenic transcripts of unknown function, many of which are long non-coding RNAs, that may function in pollen-specific processes, including the heat stress response. Abstract The male gametophyte is the most heat sensitive of all plant tissues. In recent years, long noncoding RNAs (lncRNAs) have emerged as important components of cellular regulatory networks involved in most biological processes, including response to stress. While examining RNAseq datasets of developing and germinating Arabidopsis thaliana pollen exposed to heat stress (HS), we identified 66 novel and 246 recently annotated intergenic expressed loci (XLOCs) of unknown function, with the majority encoding lncRNAs. Comparison with HS in cauline leaves and other RNAseq experiments indicated that 74% of the 312 XLOCs are pollen-specific, and at least 42% are HS-responsive. Phylogenetic analysis revealed that 96% of the genes evolved recently in Brassicaceae. We found that 50 genes are putative targets of microRNAs and that 30% of the XLOCs contain small open reading frames (ORFs) with homology to protein sequences. Finally, RNAseq of ribosome-protected RNA fragments together with predictions of periodic footprint of the ribosome P-sites indicated that 23 of these ORFs are likely to be translated. Our findings indicate that many of the 312 unknown genes might be functional and play a significant role in pollen biology, including the HS response.


Gene ◽  
2019 ◽  
Vol 699 ◽  
pp. 62-72 ◽  
Author(s):  
Delara Akhter ◽  
Ran Qin ◽  
Ujjal Kumar Nath ◽  
Jamal Eshag ◽  
Xiaoli Jin ◽  
...  

1998 ◽  
Vol 274 (6) ◽  
pp. F1029-F1036 ◽  
Author(s):  
Karen M. Gaudio ◽  
Gunilla Thulin ◽  
Andrea Mann ◽  
Michael Kashgarian ◽  
Norman J. Siegel

The stress response was studied in suspensions of tubules from immature (IT) and mature (MT) rats after noninjury, heat, oxygen, and anoxia. Under all conditions, IT exhibited more exuberant activation of heat shock transcription factor (HSF) than MT. Characterization of activated HSF in immature cortex revealed HSF1. Also, 2 h after each condition, heat shock protein-72 (HSP-72) mRNA was twofold in IT. As the metabolic response to 45 min of anoxia, 20-min reoxygenation was assessed by measuring O2 consumption (O2C). Basal O2C was manipulated with ouabain, nystatin, and carbonylcyanide p-chloromethyoxyphenylhydrazone (CCCP). Basal O2C in IT were one-half the value of MT. After anoxia, basal O2C was reduced by a greater degree in MT. Ouabain reduced O2C to half the basal value in both noninjured and anoxic groups. Basal O2C was significantly stimulated by nystatin but not to the same level following anoxia in MT and IT. Basal O2C was also stimulated by CCCP, but after anoxia, CCCP O2C was significantly less in MT with no decrease in IT, suggesting mitochondria are better preserved in IT. Also, O2C devoted to nontransport activity was better maintained in IT.


Sign in / Sign up

Export Citation Format

Share Document