Role of heat stress response in the tolerance of immature renal tubules to anoxia

1998 ◽  
Vol 274 (6) ◽  
pp. F1029-F1036 ◽  
Author(s):  
Karen M. Gaudio ◽  
Gunilla Thulin ◽  
Andrea Mann ◽  
Michael Kashgarian ◽  
Norman J. Siegel

The stress response was studied in suspensions of tubules from immature (IT) and mature (MT) rats after noninjury, heat, oxygen, and anoxia. Under all conditions, IT exhibited more exuberant activation of heat shock transcription factor (HSF) than MT. Characterization of activated HSF in immature cortex revealed HSF1. Also, 2 h after each condition, heat shock protein-72 (HSP-72) mRNA was twofold in IT. As the metabolic response to 45 min of anoxia, 20-min reoxygenation was assessed by measuring O2 consumption (O2C). Basal O2C was manipulated with ouabain, nystatin, and carbonylcyanide p-chloromethyoxyphenylhydrazone (CCCP). Basal O2C in IT were one-half the value of MT. After anoxia, basal O2C was reduced by a greater degree in MT. Ouabain reduced O2C to half the basal value in both noninjured and anoxic groups. Basal O2C was significantly stimulated by nystatin but not to the same level following anoxia in MT and IT. Basal O2C was also stimulated by CCCP, but after anoxia, CCCP O2C was significantly less in MT with no decrease in IT, suggesting mitochondria are better preserved in IT. Also, O2C devoted to nontransport activity was better maintained in IT.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Huang ◽  
Zhinuo Huang ◽  
Ruifang Ma ◽  
Jialu Chen ◽  
Zhijun Zhang ◽  
...  

AbstractHeat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response–associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.


2015 ◽  
Vol 28 (1) ◽  
pp. 181-201 ◽  
Author(s):  
Naohiko Ohama ◽  
Kazuya Kusakabe ◽  
Junya Mizoi ◽  
Huimei Zhao ◽  
Satoshi Kidokoro ◽  
...  

2019 ◽  
Vol 24 (2) ◽  
pp. 333-342 ◽  
Author(s):  
Zengkui Lu ◽  
Youji Ma ◽  
Qing Li ◽  
Enmin Liu ◽  
Meilin Jin ◽  
...  

2007 ◽  
Vol 189 (24) ◽  
pp. 8818-8827 ◽  
Author(s):  
Diana L. Williams ◽  
Tana L. Pittman ◽  
Mike Deshotel ◽  
Sandra Oby-Robinson ◽  
Issar Smith ◽  
...  

ABSTRACT Mycobacterium leprae, a major human pathogen, grows poorly at 37°C. The basis for its inability to survive at elevated temperatures was investigated. We determined that M. leprae lacks a protective heat shock response as a result of the lack of transcriptional induction of the alternative sigma factor genes sigE and sigB and the major heat shock operons, HSP70 and HSP60, even though heat shock promoters and regulatory circuits for these genes appear to be intact. M. leprae sigE was found to be capable of complementing the defective heat shock response of mycobacterial sigE knockout mutants only in the presence of a functional mycobacterial sigH, which orchestrates the mycobacterial heat shock response. Since the sigH of M. leprae is a pseudogene, these data support the conclusion that a key aspect of the defective heat shock response in M. leprae is the absence of a functional sigH. In addition, 68% of the genes induced during heat shock in M. tuberculosis were shown to be either absent from the M. leprae genome or were present as pseudogenes. Among these is the hsp/acr2 gene, whose product is essential for M. tuberculosis survival during heat shock. Taken together, these results suggest that the reduced ability of M. leprae to survive at elevated temperatures results from the lack of a functional transcriptional response to heat shock and the absence of a full repertoire of heat stress response genes, including sigH.


2007 ◽  
Vol 53 (2) ◽  
pp. 264-274 ◽  
Author(s):  
Franziska Schramm ◽  
Jane Larkindale ◽  
Elke Kiehlmann ◽  
Arnab Ganguli ◽  
Gisela Englich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document