Faculty Opinions recommendation of IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells.

Author(s):  
Paul Gleeson
2010 ◽  
Vol 207 (9) ◽  
pp. 1871-1878 ◽  
Author(s):  
Yenkel Grinberg-Bleyer ◽  
Audrey Baeyens ◽  
Sylvaine You ◽  
Rima Elhage ◽  
Gwladys Fourcade ◽  
...  

Regulatory T cells (T reg cells) play a major role in controlling the pathogenic autoimmune process in type 1 diabetes (T1D). Interleukin 2 (IL-2), a cytokine which promotes T reg cell survival and function, may thus have therapeutic efficacy in T1D. We show that 5 d of low-dose IL-2 administration starting at the time of T1D onset can reverse established disease in NOD (nonobese diabetic) mice, with long-lasting effects. Low-dose IL-2 increases the number of T reg cells in the pancreas and induces expression of T reg cell–associated proteins including Foxp3, CD25, CTLA-4, ICOS (inducible T cell costimulator), and GITR (glucocorticoid-induced TNF receptor) in these cells. Treatment also suppresses interferon γ production by pancreas-infiltrating T cells. Transcriptome analyses show that low-dose IL-2 exerts much greater influence on gene expression of T reg cells than effector T cells (T eff cells), suggesting that nonspecific activation of pathogenic T eff cells is less likely. We provide the first preclinical data showing that low-dose IL-2 can reverse established T1D, suggesting that this treatment merits evaluation in patients with T1D.


2020 ◽  
Vol 205 (7) ◽  
pp. 1763-1777
Author(s):  
Cheng Ye ◽  
Benjamin E. Low ◽  
Michael V. Wiles ◽  
Todd M. Brusko ◽  
David V. Serreze ◽  
...  

2008 ◽  
Vol 181 (7) ◽  
pp. 4516-4522 ◽  
Author(s):  
Daniel R. Tonkin ◽  
Jing He ◽  
Gene Barbour ◽  
Kathryn Haskins

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Eric Marietta ◽  
Irina Horwath ◽  
Stephanie Meyer ◽  
Shahryar Khaleghi-Rostamkolaei ◽  
Eric Norman ◽  
...  

Abstract Background Type 1 diabetes (T1D) is an autoimmune disease that is increasing in prevalence worldwide. One of the contributing factors to the pathogenesis of T1D is the composition of the intestinal microbiota, as has been demonstrated. in T1D patients, with some studies demonstrating a deficiency in their levels of Prevotella. We have isolated a strain of Prevotella histicola from a duodenal biopsy that has anti-inflammatory properties, and in addition, alters the development of autoimmune diseases in mouse models. Therefore, our hypothesis is that the oral administration of P. histicola might delay the development of T1D in the non-obese diabetic (NOD) mice. To assess this, we used the following materials and methods. Female NOD mice (ages 5–8 weeks) were administered every other day P. histicola that was cultured in-house. Blood glucose levels were measured every other week. Mice were sacrificed at various time points for histopathological analysis of the pancreas. Modulation of immune response by the commensal was tested by analyzing regulatory T-cells and NKp46+ cells using flow cytometry and intestinal cytokine mRNA transcript levels using quantitative RT-PCR. For microbial composition, 16 s rRNA gene analysis was conducted on stool samples collected at various time points. Results Administration of P. histicola in NOD mice delayed the onset of T1D. Beta diversity in the fecal microbiomes demonstrated that the microbial composition of the mice administered P. histicola was different from those that were not treated. Treatment with P. histicola led to a significant increase in regulatory T cells with a concomitant decrease in NKp46+ cells in the pancreatic lymph nodes as compared to the untreated group after 5 weeks of treatment. Conclusions These observations suggest that P. histicola treatment delayed onset of diabetes by increasing the levels of regulatory T cells in the pancreatic lymph nodes. This preliminary work supports the rationale that enteral exposure to a non pathogenic commensal P. histicola be tested as a future therapy for T1D.


2019 ◽  
Vol 33 (7) ◽  
pp. 8241-8248 ◽  
Author(s):  
Zhixia Li ◽  
Xiajie Shi ◽  
Junbin Liu ◽  
Feng Shao ◽  
Gan Huang ◽  
...  

2018 ◽  
Author(s):  
Marcos Iglesias ◽  
Anirudh Arun ◽  
Maria Chicco ◽  
Brandon Lam ◽  
Conover Talbot ◽  
...  

AbstractDestruction of insulin-producing β-cells by autoreactive T lymphocytes leads to the development of type 1 diabetes. Type I interferons (TI-IFN) and interleukin-10 (IL-10) have been connected with the pathophysiology of this disease; however, their interplay in the modulation of diabetogenic T cells remains unknown. We have discovered that TI-IFN cause a selective inhibition of IL-10 signaling in effector and regulatory T cells, altering their responses. This correlates with diabetes development in NOD mice, where the inhibition is also spatially localized to T cells of pancreatic and mesenteric lymph nodes. IL-10 signaling inhibition is reversible and can be restored via blockade of TI-IFN/IFN-R interaction, paralleling with the resulting delay in diabetes onset and reduced severity. Overall, we propose a novel molecular link between TI-IFN and IL-10 signaling that helps better understand the complex dynamics of autoimmune diabetes development and reveals new strategies of intervention.AbbreviationsALNaxillary lymph nodesIL-10interleukin-10MFImean fluorescence intensityMLNmesentheric lymph nodesNODnonobese diabetic micePLNpancreatic lymph nodesTI-IFNtype-1 InterferonsTmemmemory T cellsTregregulatory T cells


2019 ◽  
Vol 10 ◽  
Author(s):  
Jacques C. Mbongue ◽  
Jeffrey Rawson ◽  
Pablo A. Garcia ◽  
Nelson Gonzalez ◽  
Jacob Cobb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document