nkt cells
Recently Published Documents


TOTAL DOCUMENTS

1501
(FIVE YEARS 185)

H-INDEX

114
(FIVE YEARS 6)

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Leila Khani ◽  
Mir Hadi Jazayeri ◽  
Reza Nedaeinia ◽  
Mahmood Bozorgmehr ◽  
Seyed Masood Nabavi ◽  
...  

Abstract Background Multiple sclerosis (MS) and neuromyelitis optica syndrome disease (NMOSD) are inflammatory diseases of the central nervous system. The pathogenesis and treatments for these two conditions are very different. Natural killer (NK) and natural killer T (NKT) cells are immune cells with an important role in shaping the immune response. B cells are involved in antigen presentation as well as antibody and cytokine production. There is conflicting evidence of the roles of NK, NKT, and B cells in the two conditions. We aimed to compare the frequency of CD3−CD16+CD56+NK, CD3+ CD56+ NKT, and CD5+CD19+ B cells in the peripheral blood and serum Interleukin-10 (IL-10) in patients with MS and NMOSD. Methods CD19+CD5+ B, CD3− CD16+CD56+ NK, and CD3+CD56+ NKT cells were quantitated by flow cytometry in 15 individuals with Interferon-Beta (IFN-β) treated relapsing–remitting MS (RRMS), 15 untreated RRMS, and 15 NMOSD patients as well as 30 healthy controls (HC). Serum IL-10 was measured using an enzyme-linked immunosorbent assay (ELISA). Results The percentage of CD3−CD56+CD16+ NK cells in the peripheral blood of IFN-treated MS (1.81 ± 0.87) was significantly lower than for untreated RRMS (4.74 ± 1.80), NMOSD (4.64 ± 1.26) and HC (5.83 ± 2.19) (p < 0.0001). There were also differences for the percentage of CD3−CD16+ and CD3−CD56+ cells (p < 0.001 and p < 0.0007; respectively). IFN-treated RRMS (2.89 ± 1.51) had the lowest proportion of CD3+CD56+ among the study groups (p < 0.002). Untreated RRMS (5.56 ± 3.04) and NMOSD (5.47 ± 1.24) had higher levels of CD3+CD56+ than the HC (3.16 ± 1.98). The mean percentage of CD19+CD5+ B cells in the peripheral blood of untreated RRMS patients (1.32 ± 0.67) was higher compared to the patients with NMOSD (0.30 ± 0.20), HC (0.5 ± 0.22) and IFN-treated RRMS (0.81 ± 0.17) (p < 0.0001). Serum interleukin-10 was significantly higher in the IFN-treated RRMS (8.06 ± 5.39) and in HC (8.38 ± 2.84) compared to untreated RRMS (5.07 ± 1.44) and the patients with NMOSD (5.33 ± 2.56) (p < 0.003). Conclusions The lower proportion of CD3−CD56+ CD16+ NK and CD3+CD56+ cells in peripheral blood of IFN-treated RRMS compared to other groups suggests the importance of immunomodulation in patients with RRMS disorder. Based on the differences in CD19+CD5+ B cells and serum IL-10 between patients and HC, supplementary assessments could be of value in clarifying their roles in autoimmunity.


2022 ◽  
Vol 23 (1) ◽  
pp. 479
Author(s):  
Takahiro Uchida ◽  
Shuhji Seki ◽  
Takashi Oda

Natural killer T (NKT) cells and NK cells are representative innate immune cells that perform antitumor and antimicrobial functions. The involvement of these cells in various renal diseases, including acute kidney injury (AKI), has recently become evident. Murine NKT cells are activated and cause AKI in response to various stimuli, such as their specific ligand, cytokines, and bacterial components. Both renal vascular endothelial cell injury (via the perforin-mediated pathway) and tubular epithelial cell injury (via the tumor necrosis factor-alpha/Fas ligand pathway) are independently involved in the pathogenesis of AKI. NK cells complement the functions of NKT cells, thereby contributing to the development of infection-associated AKI. Human CD56+ T cells, which are a functional counterpart of murine NKT cells, as well as a subpopulation of CD56+ NK cells, strongly damage intrinsic renal cells in vitro upon their activation, possibly through mechanisms similar to those in mice. These cells are also thought to be involved in the acute exacerbation of pre-existing glomerulonephritis triggered by infection in humans, and their roles in sepsis-associated AKI are currently under investigation. In this review, we will provide an overview of the recent advances in the understanding of the association among infections, NKT and NK cells, and kidney injury, which is much more profound than previously considered. The important role of liver macrophages in the activation of NKT cells will also be introduced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julian Burks ◽  
Purevdorj B. Olkhanud ◽  
Jay A. Berzofsky

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1901
Author(s):  
Eva Miko ◽  
Aliz Barakonyi ◽  
Matyas Meggyes ◽  
Laszlo Szereday

NKT cells represent a small but significant immune cell population as being a part of and bridging innate and adaptive immunity. Their ability to exert strong immune responses via cytotoxicity and cytokine secretion makes them significant immune effectors. Since pregnancy requires unconventional maternal immunity with a tolerogenic phenotype, investigation of the possible role of NKT cells in materno-fetal immune tolerance mechanisms is of particular importance. This review aims to summarize and organize the findings of previous studies in this field. Data and information about NKT cells from mice and humans will be presented, focusing on NKT cells characteristics during normal pregnancy in the periphery and at the materno-fetal interface and their possible involvement in female reproductive failure and pregnancy complications with an immunological background.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julen Tomás-Cortázar ◽  
Lorenzo Bossi ◽  
Conor Quinn ◽  
Catherine J. Reynolds ◽  
David K. Butler ◽  
...  

Melioidosis is a potentially fatal bacterial disease caused by Burkholderia pseudomallei and is estimated to cause 89,000 deaths per year in endemic areas of Southeast Asia and Northern Australia. People with diabetes mellitus are most at risk of melioidosis, with a 12-fold increased susceptibility for severe disease. Interferon gamma (IFN-γ) responses from CD4 and CD8 T cells, but also from natural killer (NK) and natural killer T (NKT) cells, are necessary to eliminate the pathogen. We previously reported that immunization with B. pseudomallei OmpW (BpOmpW antigen) protected mice from lethal B. pseudomallei challenge for up to 81 days. Elucidating the immune correlates of protection of the protective BpOmpW vaccine is an essential step prior to clinical trials. Thus, we immunized either non-insulin-resistant C57BL/6J mice or an insulin-resistant C57BL/6J mouse model of type 2 diabetes (T2D) with a single dose of BpOmpW. BpOmpW induced strong antibody responses, stimulated effector CD4+ and CD8+ T cells and CD4+ CD25+ Foxp3+ regulatory T cells, and produced higher IFN-γ responses in CD4+, CD8+, NK, and NKT cells in non-insulin-resistant mice. The T-cell responses of insulin-resistant mice to BpOmpW were comparable to those of non-insulin-resistant mice. In addition, as a precursor to its evaluation in human studies, humanized HLA-DR and HLA-DQ (human leukocyte antigen DR and DQ isotypes, respectively) transgenic mice elicited IFN-γ recall responses in an enzyme-linked immune absorbent spot (ELISpot)-based study. Moreover, human donor peripheral blood mononuclear cells (PBMCs) exposed to BpOmpW for 7 days showed T-cell proliferation. Finally, plasma from melioidosis survivors with diabetes recognized our BpOmpW vaccine antigen. Overall, the range of approaches used strongly indicated that BpOmpW elicits the necessary immune responses to combat melioidosis and bring this vaccine closer to clinical trials.


2021 ◽  
Author(s):  
Ling Zhong ◽  
Xinwei Yuan ◽  
Qian Zhang ◽  
Tao Jiang ◽  
Huan Li ◽  
...  

AbstractMultiple myeloma (MM), characterized by high intratumour heterogeneity, accounts for ∼10% of all haematologic malignancies. Stratified by the Revised International Staging System (R-ISS), little is known about R-ISS-related plasma cell (PC) heterogeneity, gene expression modules in cytotoxic T/NK cells and immunoregulatory ligands and receptors. Herein, we constructed a single-cell transcriptome atlas of bone marrow in normal and R-ISS-staged MM patients. Focusing on PCs, we identified and validated a subset of GZMA+ cytotoxic PCs. In addition, a malignant PC population with high proliferation capability (proliferating PCs) was associated with unfavourable prognosis and EBV infection in our collected samples. Ribonucleotide Reductase Regulatory Subunit M2 (RRM2), a specific marker of proliferating PCs, was shown to induce MM cell line proliferation and serve as a detrimental marker in MM. Subsequently, three R-ISS-dependent gene modules in cytotoxic CD8+ T and NKT cells were identified and functionally analysed. Finally, cell-cell communication between neutrophils and proliferating PCs with cytotoxic CD8+ T and NKT cells was investigated, which identified intercellular ligand receptors and potential immunotargets such as SIRPA-CD47 and TIGIT-NECTIN3. Collectively, this study provides an R-ISS-related single-cell MM atlas and reveals the clinical significance of two PC clusters, as well as potential immunotargets in MM progression.


2021 ◽  
pp. 104467
Author(s):  
Yuan-ni Wu ◽  
Rui Zhang ◽  
Xin-cheng Song ◽  
Xiao-xu Han ◽  
Jian Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuyen T. Dinh ◽  
Dragana Stanley ◽  
Letitia D. Smith ◽  
Morgane Moreau ◽  
Stuart P. Berzins ◽  
...  

AbstractiNKT cells play a critical role in controlling the strength and character of adaptive and innate immune responses. Their unique functional characteristics are induced by a transcriptional program initiated by positive selection mediated by CD1d expressed by CD4+CD8+ (double positive, DP) thymocytes. Here, using a novel Vα14 TCR transgenic strain bearing greatly expanded numbers of CD24hiCD44loNKT cells, we examined transcriptional events in four immature thymic iNKT cell subsets. A transcriptional regulatory network approach identified transcriptional changes in proximal components of the TCR signalling cascade in DP NKT cells. Subsequently, positive and negative selection, and lineage commitment, occurred at the transition from DP NKT to CD4 NKT. Thus, this study introduces previously unrecognised steps in early NKT cell development, and separates the events associated with modulation of the T cell signalling cascade prior to changes associated with positive selection and lineage commitment.


2021 ◽  
Author(s):  
Maciej M Jankowski ◽  
Bogna M Ignatowska-Jankowska ◽  
Wojciech Glac ◽  
Marek Wiergowski ◽  
Paulina Kazmierska-Grebowska ◽  
...  

Modulation of dopamine transmission evokes strong behavioral effects that can be achieved by psychoactive drugs such as haloperidol or cocaine. Cocaine non-specifically increases dopamine transmission by blocking dopamine active transporter (DAT) and evokes behavioral arousal, while haloperidol is a non-specific dopamine D2 receptor antagonist with sedative effects. Interestingly, dopamine has been found to affect immune cells in addition to its action in the central nervous system. Here we address the possible interactions between haloperidol and cocaine and their effects on both immune cells and behavior in freely moving rats. We use an intravenous model of haloperidol and binge cocaine administration to evaluate the drugs' impact on the distribution of lymphocyte subsets in both the peripheral blood and the spleen. We assess the drugs' behavioral effects by measuring locomotor activity. Cocaine evoked a pronounced locomotor response and stereotypic behaviors, both of which were completely blocked after pretreatment with haloperidol. The results suggest that blood lymphopenia which was induced by haloperidol and cocaine (except for NKT cells), is independent of dopaminergic activity and most likely results from the massive secretion of corticosterone. Haloperidol pretreatment prevented the cocaine-induced decrease in NKT cell numbers. On the other hand, the increased systemic dopaminergic activity after cocaine administration is a significant factor in retaining T CD4+ and B lymphocytes in the spleen.


Sign in / Sign up

Export Citation Format

Share Document