Faculty Opinions recommendation of Analysis of the REJ Module of Polycystin-1 Using Molecular Modeling and Force-Spectroscopy Techniques.

Author(s):  
Angela Wandinger-Ness ◽  
Heather Ward
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Meixiang Xu ◽  
Liang Ma ◽  
Paul J. Bujalowski ◽  
Feng Qian ◽  
R. Bryan Sutton ◽  
...  

Polycystin-1 is a large transmembrane protein, which, when mutated, causes autosomal dominant polycystic kidney disease, one of the most common life-threatening genetic diseases that is a leading cause of kidney failure. The REJ (receptor for egg lelly) module is a major component of PC1 ectodomain that extends to about 1000 amino acids. Many missense disease-causing mutations map to this module; however, very little is known about the structure or function of this region. We used a combination of homology molecular modeling, protein engineering, steered molecular dynamics (SMD) simulations, and single-molecule force spectroscopy (SMFS) to analyze the conformation and mechanical stability of the first ~420 amino acids of REJ. Homology molecular modeling analysis revealed that this region may contain structural elements that have an FNIII-like structure, which we named REJd1, REJd2, REJd3, and REJd4. We found that REJd1 has a higher mechanical stability than REJd2 (~190 pN and 60 pN, resp.). Our data suggest that the putative domains REJd3 and REJd4 likely do not form mechanically stable folds. Our experimental approach opens a new way to systematically study the effects of disease-causing mutations on the structure and mechanical properties of the REJ module of PC1.


1998 ◽  
Vol 95 (2) ◽  
pp. 357-365 ◽  
Author(s):  
C. Saucier ◽  
I. Pianet ◽  
M. Laguerre ◽  
Y. Glories

1991 ◽  
Vol 88 ◽  
pp. 2497-2503 ◽  
Author(s):  
DJ Vanderveken ◽  
G Baudoux ◽  
F Durant ◽  
DP Vercauteren
Keyword(s):  

2018 ◽  
Author(s):  
Antoine Taly ◽  
Francesco Nitti ◽  
Marc Baaden ◽  
samuela pasquali

<div>We present here an interdisciplinary workshop on the subject of biomolecules offered to undergraduate and high-school students with the aim of boosting their interest toward all areas of science contributing to the study of life. The workshop involves Mathematics, Physics, Chemistry, Computer Science and Biology. Based on our own areas of research, molecular modeling is chosen as central axis as it involves all disciplines. In order to provide a strong biological motivation for the study of the dynamics of biomolecules, the theme of the workshop is the origin of life. </div><div>All sessions are built around active pedagogies, including games, and a final poster presentation.</div>


Sign in / Sign up

Export Citation Format

Share Document