conformational restriction
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 19)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Asha Rani Choudhury ◽  
Atanu Maity ◽  
Sayantani Chakraborty ◽  
Rajarshi Chakrabarti

Since its first detection in 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been the cause of millions of deaths worldwide. Despite the development and administration of different vaccines, the situation is still worrisome as the virus is constantly mutating to produce newer variants some of which are highly infectious. This raises an urgent requirement to understand the infection mechanism and thereby design therapeutic-based treatment for COVID-19. The gateway of the virus to the host cell is mediated by the binding of the Receptor Binding Domain (RBD) of the virus spike protein to the Angiotensin-Converting Enzyme 2 (ACE2) of the human cell. Therefore, the RBD of SARS-CoV-2 can be used as a target to design therapeutics. The α1 helix of ACE2 which forms direct contact with the RBD surface has been used as a template in the current study to design stapled peptide therapeutics. Using computer simulation, the mechanism and thermodynamics of the binding of six stapled peptides with RBD have been estimated. Among these, the one with two lactam stapling agents has shown binding affinity, sufficient to overcome RBD-ACE2 binding. Analyses of the mechanistic detail reveal that a reorganization of amino acids at the RBD-ACE2 interface produces favorable enthalpy of binding whereas conformational restriction of the free peptide reduces the loss in entropy to result in higher binding affinity. The understanding of the relation of the nature of the stapling agent with their binding affinity opens up the avenue to explore stapled peptides as therapeutic against SARS-CoV-2.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1051
Author(s):  
Sebastián Miranda-Rojas ◽  
Kevin Blanco-Esperguez ◽  
Iñaki Tuñón ◽  
Johannes Kästner ◽  
Fernando Mendizábal

The mixed lineage leukemia 3 or MLL3 is the enzyme in charge of the writing of an epigenetic mark through the methylation of lysine 4 from the N-terminal domain of histone 3 and its deregulation has been related to several cancer lines. An interesting feature of this enzyme comes from its regulation mechanism, which involves its binding to an activating dimer before it can be catalytically functional. Once the trimer is formed, the reaction mechanism proceeds through the deprotonation of the lysine followed by the methyl-transfer reaction. Here we present a detailed exploration of the activation mechanism through a QM/MM approach focusing on both steps of the reaction, aiming to provide new insights into the deprotonation process and the role of the catalytic machinery in the methyl-transfer reaction. Our finding suggests that the source of the activation mechanism comes from conformational restriction mediated by the formation of a network of salt-bridges between MLL3 and one of the activating subunits, which restricts and stabilizes the positioning of several residues relevant for the catalysis. New insights into the deprotonation mechanism of lysine are provided, identifying a valine residue as crucial in the positioning of the water molecule in charge of the process. Finally, a tyrosine residue was found to assist the methyl transfer from SAM to the target lysine.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 479
Author(s):  
Rajkumar Lalji Sahani ◽  
Raquel Diana-Rivero ◽  
Sanjeev Kumar V. Vernekar ◽  
Lei Wang ◽  
Haijuan Du ◽  
...  

Small molecules targeting the PF74 binding site of the HIV-1 capsid protein (CA) confer potent and mechanistically unique antiviral activities. Structural modifications of PF74 could further the understanding of ligand binding modes, diversify ligand chemical classes, and allow identification of new variants with balanced antiviral activity and metabolic stability. In the current work, we designed and synthesized three series of PF74-like analogs featuring conformational constraints at the aniline terminus or the phenylalanine carboxamide moiety, and characterized them using a biophysical thermal shift assay (TSA), cell-based antiviral and cytotoxicity assays, and in vitro metabolic stability assays in human and mouse liver microsomes. These studies showed that the two series with the phenylalanine carboxamide moiety replaced by a pyridine or imidazole ring can provide viable hits. Subsequent SAR identified an improved analog 15 which effectively inhibited HIV-1 (EC50 = 0.31 μM), strongly stabilized CA hexamer (ΔTm = 8.7 °C), and exhibited substantially enhanced metabolic stability (t1/2 = 27 min for 15 vs. 0.7 min for PF74). Metabolic profiles from the microsomal stability assay also indicate that blocking the C5 position of the indole ring could lead to increased resistance to oxidative metabolism.


2021 ◽  
Author(s):  
Haiqiao Huang ◽  
Saran Long ◽  
Daipeng Huang ◽  
Jianjun Du ◽  
Jiangli Fan ◽  
...  

A rigidly hemicyanine CSZ-J and a flexible molecule ESZ-J were synthesized. In particularly, the conformationally restrained CSZ-J had higher fluorescence quantum yields, longer fluorescence lifetimes and higher triplet state quantum...


2020 ◽  
Vol 28 (20) ◽  
pp. 115696
Author(s):  
Ian Armstrong ◽  
Ali H. Aldhumani ◽  
Jia L. Schopis ◽  
Fang Fang ◽  
Eric Parsons ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3562
Author(s):  
Mizuki Watanabe ◽  
Takaaki Kobayashi ◽  
Yoshihiko Ito ◽  
Shizuo Yamada ◽  
Satoshi Shuto

We designed and synthesized conformationally rigid histamine analogues with a bicyclo[3.1.0]hexane scaffold. All the compounds were selectively bound to the H3 receptor subtype over the H4 receptor subtype. Notably, compound 7 showed potent binding affinity and over 100-fold selectivity for the H3 receptors (Ki = 5.6 nM for H3 and 602 nM for H4). These results suggest that the conformationally rigid bicyclo[3.1.0]hexane structure can be a useful scaffold for developing potent ligands selective for the target biomolecules.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1732
Author(s):  
Hibiki Komine ◽  
Shohei Mori ◽  
Kunihiko Morihiro ◽  
Kenta Ishida ◽  
Takumi Okuda ◽  
...  

Natural oligonucleotides have many rotatable single bonds, and thus their structures are inherently flexible. Structural flexibility leads to an entropic loss when unwound oligonucleotides form a duplex with single-stranded DNA or RNA. An effective approach to reduce such entropic loss in the duplex-formation is the conformational restriction of the flexible phosphodiester linkage and/or sugar moiety. We here report the synthesis and biophysical properties of a novel artificial nucleic acid bearing an oxanorbornane scaffold (OxNorNA), where the adamant oxanorbornane was expected to rigidify the structures of both the linkage and sugar parts of nucleic acid. OxNorNA phosphoramidite with a uracil (U) nucleobase was successfully synthesized over 15 steps from a known sugar-derived cyclopentene. Thereafter, the given phosphoramidite was incorporated into the designed oligonucleotides. Thermal denaturation experiments revealed that oligonucleotides modified with the conformationally restricted OxNorNA-U properly form a duplex with the complementally DNA or RNA strands, although the Tm values of OxNorNA-U-modified oligonucleotides were lower than those of the corresponding natural oligonucleotides. As we had designed, entropic loss during the duplex-formation was reduced by the OxNorNA modification. Moreover, the OxNorNA-U-modified oligonucleotide was confirmed to have extremely high stability against 3′-exonuclease activity, and its stability was even higher than those of the phosphorothioate-modified counterparts (Sp and Rp). With the overall biophysical properties of OxNorNA-U, we expect that OxNorNA could be used for specialized applications, such as conformational fixation and/or bio-stability enhancement of therapeutic oligonucleotides (e.g., aptamers).


2020 ◽  
Author(s):  
Anil K. Pandey ◽  
Himal K. Ganguly ◽  
Sudipta Kumar Sinha ◽  
Kelly E. Daniels ◽  
Glenn P. A. Yap ◽  
...  

AbstractPhosphorylation and dephosphorylation of proteins by kinases and phosphatases are central to cellular responses and function. The structural effects of serine and threonine phosphorylation were examined in peptides and in proteins, by circular dichroism, NMR spectroscopy, bioinformatics analysis of the PDB, small-molecule X-ray crystallography, and computational investigations. Phosphorylation of both serine and threonine residues induces substantial conformational restriction in their physiologically more important dianionic forms. Threonine exhibits a particularly strong disorder-to-order transition upon phosphorylation, with dianionic phosphothreonine preferentially adopting a cyclic conformation with restricted ϕ (ϕ ∼ –60°) stabilized by three noncovalent interactions: a strong intraresidue phosphate-amide hydrogen bond, an n→π* interaction between consecutive carbonyls, and an n→σ* interaction between the phosphate Oγ lone pair and the antibonding orbital of C–Hβ that restricts the χ2 side chain conformation. Proline is unique among the canonical amino acids for its covalent cyclization on the backbone. Phosphothreonine can mimic proline’s backbone cyclization via noncovalent interactions. The preferred torsions of dianionic phosphothreonine are ϕ,ψ = polyproline helix or α-helix (ϕ ∼ –60°); χ1 = g−; χ2 = eclipsed C–H/O–P bonds. This structural signature is observed in diverse proteins, including the activation loops of protein kinases and protein-protein interactions. In total, these results suggest a structural basis for the differential use and evolution of threonine versus serine phosphorylation sites in proteins, with serine phosphorylation typically inducing smaller, rheostat-like changes, versus threonine phosphorylation promoting larger, step function-like switches, in proteins.


Sign in / Sign up

Export Citation Format

Share Document