Faculty Opinions recommendation of REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock.

Author(s):  
C Robertson McClung
2020 ◽  
Author(s):  
Rebecca A. Mosig ◽  
Allison N. Castaneda ◽  
Jacob C. Deslauriers ◽  
Landon P. Frazier ◽  
Kevin L. He ◽  
...  

AbstractCircadian transcriptome studies identified a novel transcript at the Period2 (Per2) locus, which we named Per2AS. Per2AS is a long non-coding RNA transcribed from the antisense strand of Per2, and is expressed rhythmically and anti-phasic to Per2 mRNA. Previously, we mathematically tested the hypothesis that Per2AS and Per2 mutually inhibit each other’s expression by forming a double negative feedback loop, and found that Per2AS expands the oscillatory domain. In this study, we have experimentally tested this prediction by perturbing the expression of Per2AS in mouse fibroblasts. We found that Per2AS represses Per2 pre-transcriptionally in cis and regulates the amplitude of the circadian clock, but not period or phase. Unexpectedly, we also found that Per2 positively regulates Per2AS post-transcriptionally, indicating that Per2AS and Per2 form a single negative feedback loop. Because knock-down of Per2 does not recapitulate the phenotypes of Per2AS perturbation and Per2AS also activates Bmal1 in trans, we propose that Per2AS regulates the amplitude of the circadian clock without producing a protein by rewiring the molecular clock circuit.


PLoS Genetics ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. e1001350 ◽  
Author(s):  
Reetika Rawat ◽  
Nozomu Takahashi ◽  
Polly Yingshan Hsu ◽  
Matthew A. Jones ◽  
Jacob Schwartz ◽  
...  

2020 ◽  
Author(s):  
Benjamin Heidebrecht ◽  
Jing Chen ◽  
John J. Tyson

ABSTRACTA wide variety of organisms possess endogenous circadian rhythms (~24 h period), which coordinate many physiological functions with the day-night cycle. These rhythms are mediated by a molecular mechanism based on transcription-translation feedback. A number of mathematical models have been developed to study features of the circadian clock in a variety of organisms. In this paper, we use bifurcation theory to explore properties of mathematical models based on Kim & Forger’s interpretation of the circadian clock in mammals. Their models are based on a simple negative feedback (SNF) loop between a regulatory protein (PER) and its transcriptional activator (BMAL). In their model, PER binds to BMAL to form a stoichiometric complex (PER:BMAL) that is inactive as a transcription factor. However, for oscillations to occur in the SNF model, the dissociation constant of the PER:BMAL complex, Kd, must be smaller than 10−3 nM, orders of magnitude below the limit set by the biophysics of protein binding. We have relaxed this constraint by introducing two modifications to Kim & Forger’s SNF model: (1) replacing the first-order rate law for degradation of PER in the nucleus by a Michaelis-Menten rate law, and (2) introducing a multistep reaction chain for posttranslational modifications of PER. These modifications significantly increase the robustness of oscillations, and increase the maximum allowable Kd to more reasonable values, 1—100 nM. In a third modification, we considered alternative rate laws for gene transcription to resolve an unrealistically large rate of PER transcription at very low levels of BMAL transcription factor. Additionally, we studied Kim & Forger’s extensions of the SNF model to include a second negative feedback loop (involving REV-ERB) and a supplementary positive feedback loop (involving ROR). We found that the supplementary positive feedback loop—but not the supplementary negative feedback loop— provides additional robustness to the clock model.AUTHOR SUMMARYThe circadian rhythm aligns bodily functions to the day/night cycle and is important for our health. The rhythm originates from an intracellular, molecular clock mechanism that mediates rhythmic gene expression. It is long understood that transcriptional negative feedback with sufficient time delay is key to generating circadian oscillations. However, some of the most widely cited mathematical models for the circadian clock suffer from problems of parameter “fragilities”. That is, sustained oscillations are possible only for physically unrealistic parameter values. A recent model by Kim and Forger nicely incorporates the inhibitory binding of PER, a key clock protein, to its transcription activator BMAL, but oscillations in their model require a binding affinity between PER and BMAL that is orders of magnitude lower than the physical limit of protein-protein binding. To rectify this problem, we make several physiologically credible modifications to the Kim-Forger model, which allow oscillations to occur with realistic binding affinity. The modified model is further extended to explore the potential roles of supplementary feedback loops in the mammalian clock mechanism. Ultimately, accurate models of the circadian clock will provide predictive tools for chronotherapy and chrono-pharmacology studies.


2021 ◽  
Vol 22 (16) ◽  
pp. 8472
Author(s):  
Senem Aykul ◽  
Jordan Maust ◽  
Vijayalakshmi Thamilselvan ◽  
Monique Floer ◽  
Erik Martinez-Hackert

Adipose tissues (AT) expand in response to energy surplus through adipocyte hypertrophy and hyperplasia. The latter, also known as adipogenesis, is a process by which multipotent precursors differentiate to form mature adipocytes. This process is directed by developmental cues that include members of the TGF-β family. Our goal here was to elucidate, using the 3T3-L1 adipogenesis model, how TGF-β family growth factors and inhibitors regulate adipocyte development. We show that ligands of the Activin and TGF-β families, several ligand traps, and the SMAD1/5/8 signaling inhibitor LDN-193189 profoundly suppressed 3T3-L1 adipogenesis. Strikingly, anti-adipogenic traps and ligands engaged the same mechanism of action involving the simultaneous activation of SMAD2/3 and inhibition of SMAD1/5/8 signaling. This effect was rescued by the SMAD2/3 signaling inhibitor SB-431542. By contrast, although LDN-193189 also suppressed SMAD1/5/8 signaling and adipogenesis, its effect could not be rescued by SB-431542. Collectively, these findings reveal the fundamental role of SMAD1/5/8 for 3T3-L1 adipogenesis, and potentially identify a negative feedback loop that links SMAD2/3 activation with SMAD1/5/8 inhibition in adipogenic precursors.


2016 ◽  
Vol 24 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Yanbo Wang ◽  
Hongwei Liang ◽  
Geyu Zhou ◽  
Xiuting Hu ◽  
Zhengya Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document