Faculty Opinions recommendation of Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis.

Author(s):  
Vitaly Citovsky ◽  
Benoît Lacroix
2014 ◽  
Vol 206 (4) ◽  
pp. 1364-1377 ◽  
Author(s):  
Marçal Soler ◽  
Eduardo Leal Oliveira Camargo ◽  
Victor Carocha ◽  
Hua Cassan-Wang ◽  
Hélène San Clemente ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8473
Author(s):  
Xinling Hu ◽  
Lisha Zhang ◽  
Iain Wilson ◽  
Fenjuan Shao ◽  
Deyou Qiu

The MYB transcription factor family is one of the largest gene families playing regulatory roles in plant growth and development. The MYB family has been studied in a variety of plant species but has not been reported in Taxus chinensis. Here we identified 72 putative R2R3-MYB genes in T. chinensis using a comprehensive analysis. Sequence features, conversed domains and motifs were characterized. The phylogenetic analysis showed TcMYBs and AtMYBs were clustered into 36 subgroups, of which 24 subgroups included members from T. chinensis and Arabidopsis thaliana, while 12 subgroups were specific to one species. This suggests the conservation and specificity in structure and function of plant R2R3-MYBs. The expression of TcMYBs in various tissues and different ages of xylem were investigated. Additionally, miRNA-mediated posttranscriptional regulation analysis revealed that TcMYBs were the targets of miR858, miR159 and miR828, suggesting the posttranscriptional regulation of MYBs is highly conserved in plants. The results provide a basis for further study the role of TcMYBs in the regulation of secondary metabolites of T. chinensis.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 823 ◽  
Author(s):  
Yu Han ◽  
Jiayao Yu ◽  
Tao Zhao ◽  
Tangren Cheng ◽  
Jia Wang ◽  
...  

Rosa chinensis, an important ancestor species of Rosa hybrida, the most popular ornamental plant species worldwide, produces flowers with diverse colors and fragrances. The R2R3-MYB transcription factor family controls a wide variety of plant-specific metabolic processes, especially phenylpropanoid metabolism. Despite their importance for the ornamental value of flowers, the evolution of R2R3-MYB genes in plants has not been comprehensively characterized. In this study, 121 predicted R2R3-MYB gene sequences were identified in the rose genome. Additionally, a phylogenomic synteny network (synnet) was applied for the R2R3-MYB gene families in 35 complete plant genomes. We also analyzed the R2R3-MYB genes regarding their genomic locations, Ka/Ks ratio, encoded conserved motifs, and spatiotemporal expression. Our results indicated that R2R3-MYBs have multiple synteny clusters. The RcMYB114a gene was included in the Rosaceae-specific Cluster 54, with independent evolutionary patterns. On the basis of these results and an analysis of RcMYB114a-overexpressing tobacco leaf samples, we predicted that RcMYB114a functions in the phenylpropanoid pathway. We clarified the relationship between R2R3-MYB gene evolution and function from a new perspective. Our study data may be relevant for elucidating the regulation of floral metabolism in roses at the transcript level.


2007 ◽  
Vol 35 (6) ◽  
pp. 1751-1760 ◽  
Author(s):  
G. Cattaruzzi ◽  
S. Altamura ◽  
M. A. Tessari ◽  
A. Rustighi ◽  
V. Giancotti ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Cell Reports ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 109446
Author(s):  
Benjamin Bourgeois ◽  
Tianshu Gui ◽  
Diana Hoogeboom ◽  
Henry G. Hocking ◽  
Gesa Richter ◽  
...  

Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


Sign in / Sign up

Export Citation Format

Share Document