Food Production, Processing and Nutrition
Latest Publications


TOTAL DOCUMENTS

79
(FIVE YEARS 79)

H-INDEX

5
(FIVE YEARS 5)

Published By Springer Science And Business Media LLC

2661-8974

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Cong-Cong Zhuang ◽  
Chun-Rui Liu ◽  
Cheng-Bin Shan ◽  
Zheng Liu ◽  
Ling Liu ◽  
...  

AbstractThis study used alcoholic ammonium hydroxide to directly hydrolyze and extract secoisolariciresinol diglucoside (SDG) from flaxseed hull in a one pot reaction. The optimal extraction conditions, including the concentration of ammonium hydroxide, extraction time, and temperature, were examined in single factor experiments, followed by response surface methodology (RSM) with 3-level, 3-factor Box-Behnken experiments. As a result, the optimal extraction conditions were determined as follows: material-liquid ratio 1:20, percentage of reagent ammonium hydroxide (25–28% of NH3 in water) in ethanol 33.7% (pH = 12.9), extraction time 4.9 h, and extraction temperature 75.3 °C. Under these conditions, the yield of SDG, as measured by ultra-high-performance liquid chromatography-mass spectrometry, was 23.3 mg/g, consistent with the predicted content of SDG in flaxseed hull (23.0 mg/g). Further, 30.0 g of pulverized flaxseed hull was extracted under the optimal conditions, and the extract was subjected to a single run of macroporous resin chromatography to obtain 772.1 mg of a fraction with an SDG content exceeding 76.1%. Subsequent chromatography on Sephadex LH20, yielded 602.8 mg SDG of 98.0% purity, and the yield was 20.1 mg/g (2.0%) from flaxseed hulls. Thus, one-pot hydrolysis and extraction of SDG using alcoholic ammonium hydroxide is simple, and of high-yield. Graphical abstract


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Venkatesh Balan ◽  
Dianne Novak ◽  
William Knudson ◽  
A. Daniel Jones ◽  
Fabiola Maria Iñiguez-Franco ◽  
...  

Abstract Global salty snacks category had reached USD 137 billion in sales in 2018. Due to growing health concerns and awareness, consumers are looking for healthy snack choices by avoiding ingredients such as fat, sugar, cholesterol, and sodium and selecting baked and salt free multigrain chips. A sizable number of consumers are concerned about snack nutrition and look for quality ingredients and minimally processed foods called as “Good Health Snack (GHS)”. In this work, we present the development of method of producing and testing mushrooms protein crisps (MPC), a healthy alternative to conventional starchy snacks that are rich in protein, nutraceutical compounds, minerals, vitamin, dietary fiber, and immunity inducing beta-glucans. The methods of producing MPC with different seasoning and hydrolyzed protein, calorie, nutritional and chemical composition, consumer response, shelf life after packing and market analysis are described. These systematic studies will help to market potential of this product which is a healthy alternative to other calorie rich snacks sold in the market benefiting the consumers. Graphical abstract


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Judith Uchenna Chima ◽  
Temitope Omolayo Fasuan

AbstractThis study investigated the symbiotic and adverse consequence of hypogeal germination periods on nutrients and non-nutrient characteristics of brown rice (Oryza sativa). Brown rice paddy was subjected to hypogeal germination for 0–72 h using one-factor design-response surface methodology (OFD-RSM) and evaluated for nutrients and non-nutrient characteristics. The results showed that hypogeal germination caused a significant (p < 0.05) change in the proximate composition: protein (9.42–12.36%), fat (0.88–1.38%), ash (1.87–2.50%); anti-nutrients: saponin (2.03–2.22%), oxalate (2.44–3.45 mg/100 g), phytate (6.99–8.81 mg/100 g); functional properties: water absorption capacity, WAC (121.23–147.78%), oil absorption capacity, OAC (121.39–147.26%); antioxidants properties: 2, 2-diphenyl-1-picrylhydrazyl, DPPH (35.30–43.60%), ferric reducing antioxidant power, FRAP (0.054–0.119 mMolFe2+), metal chelating activity, MCA (44.28–52.99%), total phenolic content, TPC (0.623–0.798 mg gallic acid equipvalent per gram (mgGAE/g)), total flavonoid content, TFC (43.47–50.63 mg rutin equivalent per gram (mgRUTIN/g)); and mineral content: calcium (36.0–41.76 mg/100 g), phosphorus (82.53–94.32 mg/100 g), and magnesium (162.70–168.36 mg/100 g). Germination had significant symbiotic effects (linear and quadratic) on the proximate, DPPH, FRAP, MCA, TPC, WAC, OAC, and anti-nutrients. Whereas, adverse effects (linear and quadratic) of germination were noted in total flavonoids and anti-nutrients. Optimum hypogeal germination period of 72.18 h was established and corresponding protein (12.37 g/100 g), fat (1.37 g/100 g), fibre (2.15 g/100 g), moisture (10.07 g/100 g), DPPH (43.66%), FRAP (0.105mMolFe2+), TPC (0.08mgGAE/g), TFC (50.25MgRUTIN/g), WAC (147.99%), OAC (147.29%), Calcium (41.77 mg/100 g), iron (0.207 mg/100 g), zinc (5.89 mg/100 g), phosphorus (94.77 mg/100 g). Phenolic compounds profile of the optimized germinated brown rice showed the presence of gallic acid (2.84 mg/100 g), 4-hydroxy benzoic acid (3.41 mg/100 g), caffeic acid (4.63 mg/100 g), vanillic acid (6.19 mg/100 g), catechin (3.88 mg/100 g), chlorogenic acid (1.93 mg/100 g), ferulic acid (4.16 mg/100 g), and quercetin (1.27 mg/100 g) whereas, the non-germinated rice showed gallic acid (2.05 mg/100 g), 4-hydroxy benzoic acid (2.53 mg/100 g), caffeic acid (4.11 mg/100 g), vanillic acid (6.08 mg/100 g), catechin (3.35 mg/100 g), chlorogenic acid (1.89 mg/100 g), ferulic acid (4.23 mg/100 g), and quercetin (1.29 mg/100 g). Hypogeal germinated brown rice could find application as a functional ingredient in food formulation.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Soumya Majumder ◽  
Sumedha Saha ◽  
Arindam Ghosh ◽  
Sukanya Acharyya ◽  
Sahadeb Sarkar ◽  
...  

Abstract This research work was designed to attempt and propose the first report on production and biochemical characterization of fermented tea flower petal decoction or simply tea petal wine. The tea petal decoction and brewer’s yeast or Saccharomyces cerevisiae were co-cultured for fermentation. Antioxidant activity and chromatographic separation of potential candidates were assessed. Primary investigations for qualitative characters on this fermented broth revealed the presence of steroids, tannin, flavonoids, phenol, cardiac glycosides, coumarin, caffeine etc. Our manufactured fermented broth showed high free radical scavenging activity after 2 months of aging. High DPPH scavenging activities were also observed in solvent fractions of acetone, ethanol and methanol. The antioxidant activity, alcohol percentage and other qualities were seen to be gradually increased during aging. Gas chromatography-mass spectrometry analysis revealed the presence of 44 compounds including many potential antioxidant molecules and other bioactive agents. Hopefully, presence of alcohol with medicinally active compounds and antioxidant activity will make it as acceptable as a good wine and tea flower as economically functional. Graphical abstract


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mackenzie M. Hansen ◽  
Richard W. Hartel ◽  
Yrjö H. Roos

Abstract Bioactive compounds including polyphenols (PP) have been observed to naturally form non-covalent complexation interactions with proteins under mild pH and temperature conditions, affecting protein structures and functionality. Previously, addition of Aronia berry PP to liquid dispersions containing whey protein isolate (WPI) and sucrose was found to alter characteristics including viscosity, surface tension, and particle sizes, with changes being attributed to protein-PP interactions. In this study we aimed to investigate whether Aronia PP would interact with soy and pea protein isolates (SPI and PPI, respectively) to a similar extent as with WPI in liquid protein-sucrose-PP mixtures. We hypothesized that formulations containing PPI (comprised of larger proteins) and hydrolyzed SPI (containing more carboxyl groups) may exhibit increased viscosities and decreased aggregate sizes due to enhanced protein-PP interactions. Concentrated liquid dispersions of varied ratios of protein to sucrose contents, containing different protein isolates (WPI, SPI, and PPI), and varied Aronia PP concentrations were formulated, and physical properties were evaluated to elucidate the effects of PP addition. PP addition altered physical characteristics differently depending on the protein isolate used, with changes attributed to protein-PP interactions. SPI and PPI appeared to have higher propensities for PP interactions and exhibited more extensive shifts in physical properties than WPI formulations. These findings may be useful for practical applications such as formulating products containing fruit and proteins to obtain desirable sensory attributes. Graphical abstract


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Na Thi Ty Ngo ◽  
Fereidoon Shahidi

AbstractCamelina and flixweed (sophia) seed protein isolates were prepared using both the conventional extraction and ultrasonic-assisted extraction methods at 40 kHz for 20 min, and their functional properties investigated. SDS-PAGE showed that both ultrasound-assisted and conventional extractions resulted in a similar protein profile of the extract. The application of ultrasound significantly improved protein extraction/content and functional properties (water holding capacity, oil absorption capacity, emulsifying foaming properties, and protein solubility) of camelina protein isolate and sophia protein isolate. The water-holding and oil absorption capacities of sophia protein isolate were markedly higher than those of camelina protein isolate. These results suggest that camelina protein isolate and sophia protein isolate may serve as natural functional ingredients in the food industry. Graphical Abstract


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Oday Alrifai ◽  
Lili Mats ◽  
Ronghua Liu ◽  
Xiuming Hao ◽  
Massimo F. Marcone ◽  
...  

AbstractAs of recent, microgreen vegetable production in controlled environments are being investigated for their bioactive properties. Phytochemicals like glucosinolates (GLS) are highly sensitive to varying spectral qualities of light, especially in leafy greens of Brassica where the responses are highly species-dependent. The accumulation of bioactive GLS were studied under 8 different treatments of combined amber (590 nm), blue (455 nm), and red (655 nm) light-emitting diodes (rbaLED). A semi-targeted metabolomics approach was carried out to profile common intact-GLS in microgreen extracts of Brassica by means of LC-HRMS/MS. Thirteen GLS were identified, among them were 8 aliphatic, 4 indolic and 1 aromatic GLS. Mass spectrometry data showed sinigrin had the highest average concentration and was highest in B. juncea, progoitrin was highest in B. rapa and glucobrassicin in R. sativus. The individual and total GLS in the microgreens of the present study were largely different under rbaLED; B. rapa microgreens contained the highest profile of total GLS, followed by R. sativus and B. juncea. Sinigrin was increased and gluconasturtiin was decreased under rbaLED lighting in most microgreens, glucoalyssin uniquely increased in R. sativus and decreased in B. rapa and glucobrassicin uniquely decreased in both B. rapa and B. juncea. The present study showed that rbaLED contributed to the altered profiles of GLS resulting in their significant modulation. Optimizing the light spectrum for improved GLS biosynthesis could lead to production of microgreens with targeted health-promoting properties. Graphical Abstract


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Fuhao Wang ◽  
Lu Huang ◽  
Xingxing Yuan ◽  
Xiaoyan Zhang ◽  
Luping Guo ◽  
...  

Abstract This study aimed to investigate the proximate and phytochemicals present in seeds of 24 mung bean (Vigna radiate L.) genotypes from four provinces of China for estimating their nutritional and antioxidant properties. Proximate analysis of mung bean genotypes revealed that starch, protein, fat, ash and water-soluble polysaccharide ranged from 39.54–60.66, 17.36–24.89, 4.24–12.18, 2.78–3.53 and 1.99–2.96 g/100 g respectively. The five principal fatty acids detected in mung beans were stearic acid, palmitic acid, linoleic acid, oleic acid, and linolenic acid. The contents of insoluble-bound phenolic compounds, soluble phenolic compounds, and flavonoids ranged from 0.78 to 1.5 mg GAE g− 1, 1.78 to 4.10 mg GAE g− 1, and 1.25 to 3.52 mg RE g− 1, respectively. The black seed coat mung bean genotype M13 (Suheilv 1) exhibited highest flavonoid and phenolic contents which showed strong antioxidant activity. Two flavonoids (vitexin and isovitexin) and four phenolic acids (caffeic, syringic acid, p-coumaric, and ferulic acids) were identified by HPLC. Vitexin and isovitexin were the major phenolic compounds in all mung bean genotypes. The content of soluble phenolic compounds had positive correlation with DPPH (r2 = 0.713) and ABTS (r2 = 0.665) radical scavenging activities. Principal component analysis indicated that the first two principal components could reflect most details on mung bean with a cumulative contribution rate of 66.1%. Twenty-four mung bean genotypes were classified into four groups based on their phenolic compounds contents and antioxidant activities. The present study highlights the importance of these mung bean genotypes as a source of nature antioxidant ingredient for the development of functional foods or a source of health promoting food. Graphical Abstract


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mahamadé Goubgou ◽  
Laurencia T. Songré-Ouattara ◽  
Fabrice Bationo ◽  
Hagrétou Lingani-Sawadogo ◽  
Yves Traoré ◽  
...  

AbstractBiscuits are ready-to-eat foods that are traditionally prepared mainly with wheat flour, fat, and sugar. Recently, biscuits’ technologies have been rapidly developed to improve their nutritional properties. This study aimed to determine the strategies of improving the nutritional quality of biscuits and the potential health benefits associated with them. A systematic review and meta-analysis were conducted, including articles on biscuits improved by technological processes and raw materials variation. Studies were searched from Google Scholar, PubMed, Scopus, and Web of Science published between 1997 and 2020, in English and French. The meta-analysis was performed using RStudio software, version 4.0.4 to classify the biscuits. One hundred and seven eligible articles were identified. Rice, pea, potato, sorghum, buckwheat, and flaxseed flours were respectively the most found substitutes to wheat flour. But the meta-analysis shown that the copra and foxtail millet biscuit fortified with amaranth, the wheat biscuits fortified with okra, and rice biscuits fortified with soybeans had a high protein content. These biscuits therefore have a potential to be used as complementary foods. The substitution of sugar and fat by several substitutes lead to a decrease in carbohydrates, fat, and energy value. It has also brought about an increase in other nutrients such as dietary fiber, proteins/amino acids, fatty acids, and phenolic compounds. Among the sugar and fat substitutes, stevia and inulin were respectively the most used. Regarding the use of biscuits in clinical trials, they were mainly used for addressing micronutrient deficiency and for weight loss.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xin Liu ◽  
Xin Fang ◽  
Shuang Wang ◽  
Deliang Wu ◽  
Tao Gao ◽  
...  

Abstract Production of the Fusarium toxin deoxynivalenol (DON) is associated with oxidative stress and has been indicated to be part of an adaptive response to oxidative stress in the important wheat fungus Fusarium graminearum. In this study, we found that the antioxidant methyl gallate (MG) displays inhibitory effects against mycelial growth, conidial formation and germination, and DON biosynthesis in F. graminearum in a dose-dependent manner. Treatment with 0.05% (w/v) MG resulted in an abnormal swollen conidial morphology. The expression of the TRI genes involved in DON biosynthesis was significantly reduced, and the induction of Tri1-GFP green fluorescence signals in the spherical and crescent-shaped toxisomes was abolished in the MG-treated mycelium. RNA-Seq analysis of MG-treated F. graminearum showed that 0.5% (w/v) MG inhibited DON production by possibly altering membrane functions and oxidoreductase activities. Coupled with the observations that MG treatment decreases catalase, POD and SOD activity in F. graminearum. The results of this study indicated that MG displays antifungal activity against DON production by modulating its oxidative response. Taken together, the current study revealed the potential of MG in inhibiting mycotoxins in F. graminearum. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document