scholarly journals An R2R3-type myeloblastosis transcription factor MYB103 is involved in phosphorus remobilization

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.

2019 ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract Background The MYB transcription factor (MYB TF) family has been reported to be involved in the regulation of biotic and abiotic stresses in plants. However, the involvement of MYB TF in phosphate remobilization under phosphate deficiency remains largely unexplored. Results Here, we showed that an R2R3 type MYB transcription factor, MYB103, was involved in the tolerance to P deficiency in Arabidopsis thaliana . AtMYB103 was induced by P deficiency, and loss function of AtMYB103 significantly enhanced sensitivity to P deficiency, as root and shoot biomass and soluble P content in the myb103 mutant were significantly lower than those in wild-type (WT) plants under the P-deficient condition. Furthermore, the expression of Pi deficiency -responsive genes was more profound in myb103 than in WT. In addition, AtMYB103 may also be involved in the cell wall-based P reutilization, as less P was released from the cell wall in myb103 than in WT, which was in company with a reduction of the ethylene production. Conclusions These findings uncover the role of MYB103 in the P remobilization, presumably through ethylene signaling.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1089
Author(s):  
Huimin Ren ◽  
Xiaohong Zhao ◽  
Wenjie Li ◽  
Jamshaid Hussain ◽  
Guoning Qi ◽  
...  

Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 201 ◽  
Author(s):  
María José López-Galiano ◽  
Inmaculada García-Robles ◽  
Ana I. González-Hernández ◽  
Gemma Camañes ◽  
Begonya Vicedo ◽  
...  

In a scenario of global climate change, water scarcity is a major threat for agriculture, severely limiting crop yields. Therefore, alternatives are urgently needed for improving plant adaptation to drought stress. Among them, gene expression reprogramming by microRNAs (miRNAs) might offer a biotechnologically sound strategy. Drought-responsive miRNAs have been reported in many plant species, and some of them are known to participate in complex regulatory networks via their regulation of transcription factors involved in water stress signaling. We explored the role of miR159 in the response of Solanum lycopersicum Mill. plants to drought stress by analyzing the expression of sly-miR159 and its target SlMYB transcription factor genes in tomato plants of cv. Ailsa Craig grown in deprived water conditions or in response to mechanical damage caused by the Colorado potato beetle, a devastating insect pest of Solanaceae plants. Results showed that sly-miR159 regulatory function in the tomato plants response to distinct stresses might be mediated by differential stress-specific MYB transcription factor targeting. sly-miR159 targeting of SlMYB33 transcription factor transcript correlated with accumulation of the osmoprotective compounds proline and putrescine, which promote drought tolerance. This highlights the potential role of sly-miR159 in tomato plants’ adaptation to water deficit conditions.


2011 ◽  
Vol 76 (2) ◽  
pp. 82-89 ◽  
Author(s):  
Ok Ran Lee ◽  
Yu-Jin Kim ◽  
Sri Renuka Devi Balusamy ◽  
Min-Kyeoung Kim ◽  
Subramaniyam Sathiyamoorthy ◽  
...  

1987 ◽  
Vol 14 (5) ◽  
pp. 561
Author(s):  
I.R McPharlin ◽  
R.L Bieleski

Growth, internal P concentration and Pi uptake was investigated in sterile cultures of Spirodela oligorrhiza (Kurz) Hegelm. and Lemna major L. plants during early P-deficiency. Within 12 h of transfer to a P-deficient medium, Pi uptake rates by P-deficient (- P) plants were enhanced 30-120% compared with P adequate (+ P) controls at 1-1000 �M external [Pi]. The enhancement in Pi uptake rates with P-deficiency normally preceded, and was more pronounced than, other effects of P-deficiency such as reduced growth, reduced internal [P] and appearance of visual symptoms. Enhanced Pi uptake rates in - P compared with +P plants resupplied with Pi was more closely correlated with a fall in the internal [Pi] (r = -0.93 to -0.98) than with a fall in the concentration of three other P fractions (i.e. ester P, lipid P, and residual P). The role of tissue [Pi] in Spirodela and Lemna plants as a possible determinant of Pi uptake rates is discussed. Kinetic analysis showed that enhanced Pi uptake in -P compared with + P plants resupplied with Pi was the result of a 2-4-fold increase in V*max of two first- order systems and not by an increased affinity (i.e. reduced K*m) of the carrier for the phosphate ion.


2012 ◽  
Vol 169 (5) ◽  
pp. 509-515 ◽  
Author(s):  
Lourdes Gómez-Gómez ◽  
Almudena Trapero-Mozos ◽  
Maria Dolores Gómez ◽  
Angela Rubio-Moraga ◽  
Oussama Ahrazem

Sign in / Sign up

Export Citation Format

Share Document