Faculty Opinions recommendation of Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin.

Author(s):  
Elly Tanaka ◽  
Dunja Knapp ◽  
Joshua Currie
Keyword(s):  
Author(s):  
Jialei Song ◽  
Yong Zhong ◽  
Ruxu Du ◽  
Ling Yin ◽  
Yang Ding

In this paper, we investigate the hydrodynamics of swimmers with three caudal fins: a round one corresponding to snakehead fish ( Channidae), an indented one corresponding to saithe ( Pollachius virens), and a lunate one corresponding to tuna ( Thunnus thynnus). A direct numerical simulation (DNS) approach with a self-propelled fish model was adopted. The simulation results show that the caudal fin transitions from a pushing/suction combined propulsive mechanism to a suction-dominated propulsive mechanism with increasing aspect ratio ( AR). Interestingly, different from a previous finding that suction-based propulsion leads to high efficiency in animal swimming, this study shows that the utilization of suction-based propulsion by a high- AR caudal fin reduces swimming efficiency. Therefore, the suction-based propulsive mechanism does not necessarily lead to high efficiency, while other factors might play a role. Further analysis shows that the large lateral momentum transferred to the flow due to the high depth of the high- AR caudal fin leads to the lowest efficiency despite the most significant suction.


2009 ◽  
Vol 7 (3) ◽  
pp. 371-376 ◽  
Author(s):  
Valdener Garutti ◽  
Francisco Langeani

Astyanax goyacensis Eigenmann, 1908 is redescribed based on the holotype and 25 topotypes. The species belongs to the A. bimaculatus species complex, sharing with those species a black, horizontally ovate, humeral spot (the most conspicuous feature of this complex), two diffuse vertical brown bars in the humeral area (the first through humeral spot and the second 2-3 scales behind), and black medium caudal-fin rays. Furthermore, A. goyacensis possesses a black stripe extending along midlateral body portion, more conspicuous in alcohol preserved specimens. These characteristics allow its inclusion in the putative "black lateral stripe" sub-group of A. bimaculatus species complex. From the species of this complex it differs by the black lateral stripe shape, pattern of chromatophores on the flank, coloration of the caudal fin, scales on the lateral line, branched rays on anal fin, eye diameter, and caudal peduncle depth. Comments about the color pattern in Astyanax bimaculatus species complex are added.


2021 ◽  
Author(s):  
Lu Yu ◽  
Qikang Chen ◽  
Xin Chu ◽  
Yang Luo ◽  
Zizhao Feng ◽  
...  
Keyword(s):  

2021 ◽  
Vol 1982 (1) ◽  
pp. 012056
Author(s):  
Renxiang Wu ◽  
Gang Du ◽  
Zheng Liu ◽  
Dongxia Zhang ◽  
Yingjie Yu
Keyword(s):  

Zootaxa ◽  
2012 ◽  
Vol 3586 (1) ◽  
pp. 329 ◽  
Author(s):  
ZACHARY S. RANDALL ◽  
LAWRENCE M. PAGE

The genus Homalopteroides Fowler 1905 is resurrected and distinguished from the genus Homaloptera van Hasselt 1823based on a combination of characters including a unique mouth morphology, dorsal-fin origin over pelvic fin,≤60 lateral-line scales, and≤30 predorsal scales. Species included in Homalopteroides are H. wassinkii (Bleeker 1853), H. modestus(Vinciguerra 1890), H. rupicola (Prashad & Mukerji 1929), H. smithi (Hora 1932), H. stephensoni (Hora 1932), H. weberi(Hora 1932), H. tweediei (Herre 1940), H. indochinensis (Silas 1953), H. nebulosus (Alfred 1969), H. yuwonoi (Kottelat1998), and possibly H. manipurensis (Arunkumar 1999). Homalopteroides modestus (Vinciguerra 1890) is a poorlyknown species that was originally described from the Meekalan and Meetan rivers of southern Myanmar. It occurs in theSalween, Mae Khlong, and Tenasserim basins, and can be distinguished from all other species of Homalopteroides by thecombination of caudal-fin pattern (black proximal and distal bars, median blotch), 15 pectoral-fin rays, pectoral-fin lengthgreater than head length, 5½–6½ scales above and 5–6 scales below the lateral line (to the pelvic fin), 39–44 total lateral-line pores, no axillary pelvic-fin lobe, pelvic fin not reaching anus, orbital length less than interorbital width in adult, and maxillary barbel reaching to or slightly past the anterior orbital rim.


2008 ◽  
Vol 5 (3) ◽  
pp. 200 ◽  
Author(s):  
S. A. Ryba ◽  
J. L. Lake ◽  
J. R. Serbst ◽  
A. D. Libby ◽  
S. Ayvazian

Environmental context. In the development of fish consumption advisories, fisheries biologists routinely sacrifice fish and analyse muscle fillets in order to determine the extent of mercury contamination. Such lethal techniques may not be suitable for endangered species or limited fish populations from smaller-sized water bodies. We compared the measured total mercury concentrations in tail fin clips to that of muscle fillets and illustrated that tail fin clips may be used as an accurate tool for predicting mercury in muscle tissue. This is the first study on the use of tail fin clips to predict mercury levels in the muscle tissue of largemouth bass with minimal impact on the fish. Abstract. The statistical relationship between total mercury (Hg) concentration in clips from the caudal fin and muscle tissue of largemouth bass (Micropterus salmoides) from 26 freshwater sites in Rhode Island, USA was developed and evaluated to determine the utility of fin clip analysis as a non-lethal and convenient method for predicting mercury concentrations in tissues. The relationship of total Hg concentrations in fin clips and muscle tissue showed an r2 of 0.85 and may be compared with an r2 of 0.89 for Hg concentrations between scales and muscle tissue that was determined in a previous study on largemouth bass. The Hg concentration in fin clip samples (mean = 0.261 μg g–1 (dry)) was more than a factor of twenty greater than in the scale samples (mean = 0.012 μg g–1 (dry)). Therefore, fin clips may be a more responsive non-lethal predictor of muscle-Hg concentrations than scale in fish species which may have reduced Hg concentrations.


2010 ◽  
Vol 34 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Sachin K. Singh ◽  
Mula G. Meena Lakshmi ◽  
Sandeep Saxena ◽  
Cherukuvada V. Brahmendra Swamy ◽  
Mohammed M. Idris

Copeia ◽  
1963 ◽  
Vol 1963 (3) ◽  
pp. 586
Author(s):  
Richard S. Peckham ◽  
Clarence F. Dineen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document