Faculty Opinions recommendation of CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo.

Author(s):  
Julien Sage
2015 ◽  
Vol 210 (2) ◽  
pp. 2102OIA144
Author(s):  
Nicole Mende ◽  
Erika E Kuchen ◽  
Mathias Lesche ◽  
Tatyana Grinenko ◽  
Konstantinos D Kokkaliaris ◽  
...  

2015 ◽  
Vol 212 (8) ◽  
pp. 1171-1183 ◽  
Author(s):  
Nicole Mende ◽  
Erika E. Kuchen ◽  
Mathias Lesche ◽  
Tatyana Grinenko ◽  
Konstantinos D. Kokkaliaris ◽  
...  

Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis.


2010 ◽  
Vol 19 (4) ◽  
pp. 453-460 ◽  
Author(s):  
Peter J. Quesenberry ◽  
Gerri J. Dooner ◽  
Michael Del Tatto ◽  
Gerald A. Colvin ◽  
Kevin Johnson ◽  
...  

2015 ◽  
Vol 5 (5) ◽  
pp. 702-715 ◽  
Author(s):  
Rouzanna Istvánffy ◽  
Baiba Vilne ◽  
Christina Schreck ◽  
Franziska Ruf ◽  
Charlotta Pagel ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 816-825 ◽  
Author(s):  
Seiji Okada ◽  
Tetsuya Fukuda ◽  
Kunimasa Inada ◽  
Takeshi Tokuhisa

The proto-oncogene c-fos was transiently upregulated in primitive hematopoietic stem (Lin−Sca-1+) cells stimulated with stem cell factor, interleukin-3 (IL-3), and IL-6. To investigate a role of the c-fos in hematopoietic stem cells, we used bone marrow (BM) cells from transgenic mice carrying the c-fos gene under the control of the interferon-/β–inducible Mx-promoter (Mx–c-fos), and fetal liver cells from c-fos–deficient mice. Prolonged expression of the c-fos in Lin−Sca-1+ BM cells inhibited factor-dependent colony formation and hematopoiesis on a stromal cell layer by keeping them at G0/G1 phase of the cell cycle. These Lin−Sca-1+ BM cells on a stromal layer entered into the cell cycle whenever exogenous c-fos was downregulated. However, ectopic c-fos did not perturb colony formation by Lin−Sca-1+ BM cells after they entered the cell cycle. Furthermore, endogenous c-fos is not essential to cell cycle progression of hematopoietic stem cells because the factor-dependent and the stroma-dependent hematopoiesis by Lin−Sca-1+ fetal liver cells from c-fos–deficient mice was not impaired. These results suggest that the c-fos induced in primitive hematopoietic stem cells negatively controls cell cycle progression and maintains them in a dormant state.


2017 ◽  
Vol 53 ◽  
pp. S102
Author(s):  
Tatyana Grinenko ◽  
Anne Eugster ◽  
Lars Thielecke ◽  
Ingmar Glauche ◽  
Onur Basak ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 816-825 ◽  
Author(s):  
Seiji Okada ◽  
Tetsuya Fukuda ◽  
Kunimasa Inada ◽  
Takeshi Tokuhisa

Abstract The proto-oncogene c-fos was transiently upregulated in primitive hematopoietic stem (Lin−Sca-1+) cells stimulated with stem cell factor, interleukin-3 (IL-3), and IL-6. To investigate a role of the c-fos in hematopoietic stem cells, we used bone marrow (BM) cells from transgenic mice carrying the c-fos gene under the control of the interferon-/β–inducible Mx-promoter (Mx–c-fos), and fetal liver cells from c-fos–deficient mice. Prolonged expression of the c-fos in Lin−Sca-1+ BM cells inhibited factor-dependent colony formation and hematopoiesis on a stromal cell layer by keeping them at G0/G1 phase of the cell cycle. These Lin−Sca-1+ BM cells on a stromal layer entered into the cell cycle whenever exogenous c-fos was downregulated. However, ectopic c-fos did not perturb colony formation by Lin−Sca-1+ BM cells after they entered the cell cycle. Furthermore, endogenous c-fos is not essential to cell cycle progression of hematopoietic stem cells because the factor-dependent and the stroma-dependent hematopoiesis by Lin−Sca-1+ fetal liver cells from c-fos–deficient mice was not impaired. These results suggest that the c-fos induced in primitive hematopoietic stem cells negatively controls cell cycle progression and maintains them in a dormant state.


2007 ◽  
Vol 214 (3) ◽  
pp. 786-795 ◽  
Author(s):  
Gerri J. Dooner ◽  
Gerald A. Colvin ◽  
Mark S. Dooner ◽  
Kevin W. Johnson ◽  
Peter J. Quesenberry

Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4126-4133 ◽  
Author(s):  
Ann C. M. Brun ◽  
Jon Mar Björnsson ◽  
Mattias Magnusson ◽  
Nina Larsson ◽  
Per Leveén ◽  
...  

Abstract Enforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellularity in spleen and bone marrow (BM) and a subtle reduction in red blood cell counts and hemoglobin values. A mild reduction was observed in the numbers of primitive progenitors and stem cells in adult BM and fetal liver, whereas lineage distribution was normal. Although the cell cycle kinetics of primitive progenitors was normal during endogenous hematopoiesis, defects in proliferative responses of BM Lin- Sca1+ c-kit+ stem and progenitor cells were observed in culture and in vivo after the transplantation of BM and fetal liver HSCs. Quantitative analysis of mRNA from fetal liver revealed that a deficiency of Hoxb4 alone changed the expression levels of several other Hox genes and of genes involved in cell cycle regulation. In summary, the deficiency of Hoxb4 leads to hypocellularity in hematopoietic organs and impaired proliferative capacity. However, Hoxb4 is not required for the generation of HSCs or the maintenance of steady state hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document