Faculty Opinions recommendation of DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

Author(s):  
Lieven De Veylder
2020 ◽  
Author(s):  
Chance Jones ◽  
Susan L Forsburg

AbstractStudies of genome stability have exploited visualization of fluorescently tagged proteins in live cells to characterize DNA damage, checkpoint, and repair responses. In this report, we describe a new tool for fission yeast, a tagged version of the end-binding protein Pku70 which is part of the KU protein complex. We compare Pku70 localization to other markers upon treatment to various genotoxins, and identify a unique pattern of distribution. Pku70 provides a new tool to define and characterize DNA lesions and the repair response.


2009 ◽  
Vol 122 (22) ◽  
pp. 4130-4140 ◽  
Author(s):  
N. Mielnichuk ◽  
C. Sgarlata ◽  
J. Perez-Martin

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinfang Yu ◽  
Wei Li ◽  
Haidan Liu ◽  
Qipan Deng ◽  
Xu Wang ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Soumitra Sau ◽  
Batia Liefshitz ◽  
Martin Kupiec

ABSTRACT The PCNA (proliferating cell nuclear antigen) ring plays central roles during DNA replication and repair. The yeast Elg1 RFC-like complex (RLC) is the principal unloader of chromatin-bound PCNA and thus plays a central role in maintaining genome stability. Here we identify a role for Elg1 in the unloading of PCNA during DNA damage. Using DNA damage checkpoint (DC)-inducible and replication checkpoint (RC)-inducible strains, we show that Elg1 is essential for eliciting the signal in the DC branch. In the absence of Elg1 activity, the Rad9 (53BP1) and Dpb11 (TopBP1) adaptor proteins are recruited but fail to be phosphorylated by Mec1 (ATR), resulting in a lack of checkpoint activation. The chromatin immunoprecipitation of PCNA at the Lac operator sites reveals that accumulated local PCNA influences the checkpoint activation process in elg1 mutants. Our data suggest that Elg1 participates in a mechanism that may coordinate PCNA unloading during DNA repair with DNA damage checkpoint induction. IMPORTANCE The Elg1protein forms an RFC-like complex in charge of unloading PCNA from chromatin during DNA replication and repair. Mutations in the ELG1 gene caused genomic instability in all organisms tested and cancer in mammals. Here we show that Elg1 plays a role in the induction of the DNA damage checkpoint, a cellular response to DNA damage. We show that this defect is due to a defect in the signal amplification process during induction. Thus, cells coordinate the cell's response and the PCNA unloading through the activity of Elg1.


2008 ◽  
Vol 283 (25) ◽  
pp. 17123-17130 ◽  
Author(s):  
Anna Travesa ◽  
Alba Duch ◽  
David G. Quintana

2008 ◽  
Vol 7 (8) ◽  
pp. 2394-2404 ◽  
Author(s):  
Alessandra Blasina ◽  
Jill Hallin ◽  
Enhong Chen ◽  
Maria Elena Arango ◽  
Eugenia Kraynov ◽  
...  

2005 ◽  
Vol 25 (17) ◽  
pp. 7889-7899 ◽  
Author(s):  
Ada Collura ◽  
Joel Blaisonneau ◽  
Giuseppe Baldacci ◽  
Stefania Francesconi

ABSTRACT Living organisms experience constant threats that challenge their genome stability. The DNA damage checkpoint pathway coordinates cell cycle progression with DNA repair when DNA is damaged, thus ensuring faithful transmission of the genome. The spindle assembly checkpoint inhibits chromosome segregation until all chromosomes are properly attached to the spindle, ensuring accurate partition of the genetic material. Both the DNA damage and spindle checkpoint pathways participate in genome integrity. However, no clear connection between these two pathways has been described. Here, we analyze mutants in the BRCT domains of fission yeast Crb2, which mediates Chk1 activation, and provide evidence for a novel function of the Chk1 pathway. When the Crb2 mutants experience damaged replication forks upon inhibition of the religation activity of topoisomerase I, the Chk1 DNA damage pathway induces sustained activation of the spindle checkpoint, which in turn delays metaphase-to-anaphase transition in a Mad2-dependent fashion. This new pathway enhances cell survival and genome stability when cells undergo replicative stress in the absence of a proficient G2/M DNA damage checkpoint.


Sign in / Sign up

Export Citation Format

Share Document