Faculty Opinions recommendation of Notes from the Field: Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae - Washoe County, Nevada, 2016.

Author(s):  
David Calfee
2017 ◽  
Vol 66 (1) ◽  
pp. 33 ◽  
Author(s):  
Lei Chen ◽  
Randall Todd ◽  
Julia Kiehlbauch ◽  
Maroya Walters ◽  
Alexander Kallen

2011 ◽  
Vol 50 (2) ◽  
pp. 525-527 ◽  
Author(s):  
A. J. Brink ◽  
J. Coetzee ◽  
C. G. Clay ◽  
S. Sithole ◽  
G. A. Richards ◽  
...  

2018 ◽  
Vol 24 (4) ◽  
pp. 447-454 ◽  
Author(s):  
Saeed Shoja ◽  
Maryam Ansari ◽  
Forogh Faridi ◽  
Mohsen Azad ◽  
Parivash Davoodian ◽  
...  

2012 ◽  
Vol 6 (05) ◽  
pp. 457-461 ◽  
Author(s):  
Rima I El-Herte ◽  
George F Araj ◽  
Ghassan M Matar ◽  
Maysa Baroud ◽  
Zeina A Kanafani ◽  
...  

Carbapenem resistance has been encountered globally with poor outcome of infected patients. NDM-1 (New Delhi metallo-beta-lactamase) gene containing organisms have emerged and are now spreading in all continents. This is the first report of Iraqi patients referred to Lebanon from whom carbapenem resistant Enterobacteriaceae were recovered. The genes involved in carbapenem resistance were bla-OXA-48   and the novel NDM-1. This report highlights the alarming introduction of such resistance among Enterobacteriaecae to this country.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Rémi Le Guern ◽  
Teddy Grandjean ◽  
Marvin Bauduin ◽  
Martin Figeac ◽  
Guillaume Millot ◽  
...  

ABSTRACT While antibiotic use is a risk factor of carbapenemase-producing Enterobacteriaceae (CPE) acquisition, the importance of timing of antibiotic administration relative to CPE exposure remains unclear. In a murine model of gut colonization by New Delhi metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae, a single injection of clindamycin within at most 1 week before or after CPE exposure induced colonization persisting up to 100 days. The timing of antibiotic administration relative to CPE exposure may be relevant to infection control and antimicrobial stewardship approaches.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Taalin R. Hoj ◽  
Bradley McNeely ◽  
Kylie Webber ◽  
Evelyn Welling ◽  
William G. Pitt ◽  
...  

Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3–5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes ( Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia. Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States. Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40–60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes. Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay. Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4–8 c.f.u. ml−1. Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document