Faculty Opinions recommendation of Prefrontal cortex output circuits guide reward seeking through divergent cue encoding.

Author(s):  
Pieter Roelfsema
Nature ◽  
2017 ◽  
Vol 543 (7643) ◽  
pp. 103-107 ◽  
Author(s):  
James M. Otis ◽  
Vijay M. K. Namboodiri ◽  
Ana M. Matan ◽  
Elisa S. Voets ◽  
Emily P. Mohorn ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Briac Halbout ◽  
Andrew T Marshall ◽  
Ali Azimi ◽  
Mimi Liljeholm ◽  
Stephen V Mahler ◽  
...  

Efficient foraging requires an ability to coordinate discrete reward-seeking and reward-retrieval behaviors. We used pathway-specific chemogenetic inhibition to investigate how rats’ mesolimbic and mesocortical dopamine circuits contribute to the expression and modulation of reward seeking and retrieval. Inhibiting ventral tegmental area dopamine neurons disrupted the tendency for reward-paired cues to motivate reward seeking, but spared their ability to increase attempts to retrieve reward. Similar effects were produced by inhibiting dopamine inputs to nucleus accumbens, but not medial prefrontal cortex. Inhibiting dopamine neurons spared the suppressive effect of reward devaluation on reward seeking, an assay of goal-directed behavior. Attempts to retrieve reward persisted after devaluation, indicating they were habitually performed as part of a fixed action sequence. Our findings show that complete bouts of reward seeking and retrieval are behaviorally and neurally dissociable from bouts of reward seeking without retrieval. This dichotomy may prove useful for uncovering mechanisms of maladaptive behavior.


2020 ◽  
Author(s):  
Lailun Nahar ◽  
Caleb A. Grant ◽  
Cameron Hewett ◽  
Diego Cortes ◽  
Ashlie N. Reker ◽  
...  

2021 ◽  
Author(s):  
Tatiana D. Viena ◽  
Gabriela E. Rasch ◽  
Timothy A. Allen

AbstractThe paraventricular nucleus (PVT) of the midline thalamus is a critical higher-order cortico-thalamo-cortical integration site that plays a critical role in various behaviors including reward seeking, cue saliency, and emotional memory. Anatomical studies have shown that PVT projects to both medial prefrontal cortex (mPFC) and hippocampus (HC). However, dual mPFC-HC projecting neurons which could serve a role in synchronizing mPFC and HC activity during PVT-dependent behaviors, have not been explored. Here we used a dual retrograde adenoassociated virus (AAV) tracing approach to characterize the location and proportion of different projection populations that send collaterals to mPFC and/or ventral hippocampus (vHC). Additionally, we examined the distribution of calcium binding proteins calretinin (CR) and calbindin (CB) with respect to these projection populations PVT. We found that PVT contains separate populations of cells that project to mPFC, vHC, and those that innervate both regions. Interestingly, dual mPFC-HC projecting cells expressed neither CR or CB. Topographically, mPFC- and vHC-projecting CB+ and CR+ cells clustered around dual projecting neurons in PVT. These results are consistent with the features of dual mPFC-vHC projecting cells in the nucleus reuniens (RE) and suggestive of a functional mPFC-PVT-vHC system that may support mPFC-vHC interactions in PVT-dependent behaviors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohit Navandar ◽  
Elena Martín-García ◽  
Rafael Maldonado ◽  
Beat Lutz ◽  
Susanne Gerber ◽  
...  

AbstractAddiction is a chronic relapsing brain disease characterized by compulsive reward-seeking despite harmful consequences. The mechanisms underlying addiction are orchestrated by transcriptional reprogramming in the reward system of vulnerable subjects. This study aims at revealing gene expression alterations across different types of addiction. We analyzed publicly available transcriptome datasets of the prefrontal cortex (PFC) from a palatable food and a cocaine addiction study. We found 56 common genes upregulated in the PFC of addicted mice in these two studies, whereas most of the differentially expressed genes were exclusively linked to either palatable food or cocaine addiction. Gene ontology analysis of shared genes revealed that these genes contribute to learning and memory, dopaminergic synaptic transmission, and histone phosphorylation. Network analysis of shared genes revealed a protein–protein interaction node among the G protein-coupled receptors (Drd2, Drd1, Adora2a, Gpr6, Gpr88) and downstream targets of the cAMP signaling pathway (Ppp1rb1, Rgs9, Pde10a) as a core network in addiction. Upon extending the analysis to a cell-type specific level, some of these common molecular players were selectively expressed in excitatory neurons, oligodendrocytes, and endothelial cells. Overall, computational analysis of publicly available whole transcriptome datasets provides new insights into the molecular basis of addiction-like behaviors in PFC.


2018 ◽  
Author(s):  
Briac Halbout ◽  
Andrew T. Marshall ◽  
Ali Azimi ◽  
Mimi Liljeholm ◽  
Stephen V. Mahler ◽  
...  

AbstractEfficient foraging requires an ability to coordinate discrete reward-seeking and reward-retrieval behaviors. We used pathway-specific chemogenetic inhibition to investigate how mesolimbic and mesocortical dopamine circuits contribute to the expression and modulation of reward seeking and retrieval. Inhibiting ventral tegmental area dopamine neurons disrupted the tendency for reward-paired cues to motivate reward seeking, but spared their ability to increase attempts to retrieve reward. Similar effects were produced by inhibiting dopamine inputs to nucleus accumbens, but not medial prefrontal cortex. Inhibiting dopamine neurons spared the suppressive effect of reward devaluation on reward seeking, an assay of goal-directed behavior. Attempts to retrieve reward persisted after devaluation, indicating they were habitually performed as part of a fixed action sequence. Our findings show that complete bouts of reward seeking and retrieval are behaviorally and neurally dissociable from bouts of reward seeking without retrieval. This dichotomy may prove useful for uncovering mechanisms of maladaptive behavior.


2020 ◽  
Author(s):  
Ali Mohebi ◽  
Karim G. Oweiss

Orienting movements are essential to sensory-guided reward-seeking behaviors. Prefrontal cortex (PFC) is believed to exert top-down control over a range of goal-directed behaviors and is hypothesized to bias sensory-guided movements. However, the nature of PFC involvement in controlling sensory-guided orienting behaviors has remained largely unknown. Here, we trained rats on a delayed two-alternative forced-choice task requiring them to hold an orienting decision in working memory before execution is cued. Medial PFC (mPFC) Inactivation using either Muscimol or optogenetics impaired choice behavior. However, optogenetic impairment depended on the specific trial epoch during which inactivation took place. In particular, we found a lateralized role for mPFC during the presentation of instruction cues but this role became bilateral when inactivation occurred later in the delay period. Electrophysiological recording of multiple single-unit activity further provided evidence that this lateralized selectivity is cell-type specific. Our results suggest a previously unknown role of mPFC in mediating sensory-guided representation of orienting behavior and a potentially distinct cell-type specific role in shaping such representation across time.


Sign in / Sign up

Export Citation Format

Share Document