Faculty Opinions recommendation of Intracellular Ca2+ stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer's disease.

Author(s):  
Ilya Bezprozvanny
2003 ◽  
pp. 687-695 ◽  
Author(s):  
Ralph A. Nixon ◽  
Paul M. Mathews ◽  
Anne M. Cataldo ◽  
Panaiyur S. Mohan ◽  
Stephen D. Schmidt ◽  
...  

NeuroImage ◽  
2007 ◽  
Vol 35 (4) ◽  
pp. 1401-1408 ◽  
Author(s):  
Karen Dell Brown Smith ◽  
Verena Kallhoff ◽  
Hui Zheng ◽  
Robia G. Pautler

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Rachel E. Lackie ◽  
Jose Marques-Lopes ◽  
Valeriy G. Ostapchenko ◽  
Sarah Good ◽  
Wing-Yiu Choy ◽  
...  

Abstract Molecular chaperones and co-chaperones, which are part of the protein quality control machinery, have been shown to regulate distinct aspects of Alzheimer’s Disease (AD) pathology in multiple ways. Notably, the co-chaperone STI1, which presents increased levels in AD, can protect mammalian neurons from amyloid-β toxicity in vitro and reduced STI1 levels worsen Aβ toxicity in C. elegans. However, whether increased STI1 levels can protect neurons in vivo remains unknown. We determined that overexpression of STI1 and/or Hsp90 protected C. elegans expressing Aβ(3–42) against Aβ-mediated paralysis. Mammalian neurons were also protected by elevated levels of endogenous STI1 in vitro, and this effect was mainly due to extracellular STI1. Surprisingly, in the 5xFAD mouse model of AD, by overexpressing STI1, we find increased amyloid burden, which amplifies neurotoxicity and worsens spatial memory deficits in these mutants. Increased levels of STI1 disturbed the expression of Aβ-regulating enzymes (BACE1 and MMP-2), suggesting potential mechanisms by which amyloid burden is increased in mice. Notably, we observed that STI1 accumulates in dense-core AD plaques in both 5xFAD mice and human brain tissue. Our findings suggest that elevated levels of STI1 contribute to Aβ accumulation, and that STI1 is deposited in AD plaques in mice and humans. We conclude that despite the protective effects of STI1 in C. elegans and in mammalian cultured neurons, in vivo, the predominant effect of elevated STI1 is deleterious in AD.


2016 ◽  
Vol 52 (1) ◽  
pp. 223-242 ◽  
Author(s):  
Patricia R. Spilman ◽  
Veronique Corset ◽  
Olivia Gorostiza ◽  
Karen S. Poksay ◽  
Veronica Galvan ◽  
...  

2016 ◽  
Vol 310 (6) ◽  
pp. E388-E393 ◽  
Author(s):  
Jackob Moskovitz ◽  
Fang Du ◽  
Connor F. Bowman ◽  
Shirley S. Yan

Accumulation of oxidized proteins, and especially β-amyloid (Aβ), is thought to be one of the common causes of Alzheimer's disease (AD). The current studies determine the effect of an in vivo methionine sulfoxidation of Aβ through ablation of the methionine sulfoxide reductase A (MsrA) in a mouse model of AD, a mouse that overexpresses amyloid precursor protein (APP) and Aβ in neurons. Lack of MsrA fosters the formation of methionine sulfoxide in proteins, and thus its ablation in the AD-mouse model will increase the formation of methionine sulfoxide in Aβ. Indeed, the novel MsrA-deficient APP mice ( APP+/ MsrAKO) exhibited higher levels of soluble Aβ in brain compared with APP+ mice. Furthermore, mitochondrial respiration and the activity of cytochrome c oxidase were compromised in the APP+/ MsrAKO compared with control mice. These results suggest that lower MsrA activity modifies Aβ solubility properties and causes mitochondrial dysfunction, and augmenting its activity may be beneficial in delaying AD progression.


Sign in / Sign up

Export Citation Format

Share Document