Faculty Opinions recommendation of New mitochondrial DNA synthesis enables NLRP3 inflammasome activation.

Author(s):  
Tomas Brdicka
Nature ◽  
2018 ◽  
Vol 560 (7717) ◽  
pp. 198-203 ◽  
Author(s):  
Zhenyu Zhong ◽  
Shuang Liang ◽  
Elsa Sanchez-Lopez ◽  
Feng He ◽  
Shabnam Shalapour ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2138 ◽  
Author(s):  
Hye Eun Lee ◽  
Gabsik Yang ◽  
Youn Bum Park ◽  
Han Chang Kang ◽  
Yong-Yeon Cho ◽  
...  

Gout is a chronic inflammatory disease evoked by the deposition of monosodium urate (MSU) crystals in joint tissues. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the gout inflammatory symptoms induced by MSU crystals. We investigated whether epigallocatechin-3-gallate (EGCG) suppresses the activation of the NLRP3 inflammasome, thereby effectively preventing gouty inflammation. EGCG blocked MSU crystal-induced production of caspase-1(p10) and interleukin-1β in primary mouse macrophages, indicating its suppressive effect on the NLRP3 inflammasome. In an acute gout mouse model, oral administration of EGCG to mice effectively alleviated gout inflammatory symptoms in mouse foot tissue injected with MSU crystals. The in vivo suppressive effects of EGCG correlated well with the suppression of the NLRP3 inflammasome in mouse foot tissue. EGCG inhibited the de novo synthesis of mitochondrial DNA as well as the production of reactive oxygen species in primary mouse macrophages, contributing to the suppression of the NLRP3 inflammasome. These results show that EGCG suppresses the activation of the NLRP3 inflammasome in macrophages via the blockade of mitochondrial DNA synthesis, contributing to the prevention of gouty inflammation. The inhibitory effects of EGCG on the NLRP3 inflammasome make EGCG a promising therapeutic option for NLRP3-dependent diseases such as gout.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Zufeng Ding ◽  
Sadip Pant ◽  
Abhishek Deshmukh ◽  
Jawahar L Mehta

Objective: This study tested the hypothesis that mitochondrial DNA damage could trigger NLRP3 inflammasome activation during inflammation, and LOX-1 may play a critical role in this process. Methods and Results: We performed studies in cultured human THP1 macrophages exposed to ox-LDL or LPS,which are often used as inflammation stimuli in vitro . We examined and confirmed the increase in LOX-1 expression when cells were treated with ox-LDL or LPS. Parallel groups of cells were treated with LOX-1 Ab to bind LOX-1. In accordance with our previous studies in endothelial cells and smooth muscle cells, LOX-1 Ab markedly reduced ox-LDL- as well as LPS-stimulated LOX-1 expression. To assess mitochondrial ROS generation, MitoSOX™ Red mitochondrial superoxide indicator was used. Both fluorescence staining and flow cytometry analysis showed that LPS induced (more than ox-LDL) mitochondrial ROS generation. Pretreatment with LOX-1 Ab significantly attenuated mitochondrial ROS generation in response to ox-LDL or LPS. Then we observed mtDNA damage in THP1 cells exposed to ox-LDL or LPS. Importantly, pretreatment with LOX-1 Ab protected mtDNA from damage in response to both stimuli. This was also confirmed by q-PCR (mtDNA/nDNA ratio) analysis. Further, ox-LDL or LPS induced the expression of phos-NF-kB p65, caspase-1 p10 and p20, and cleaved proteins IL-1β and IL-18. Of note, NLRP3 inflammasome was activated in response to ox-LDL or LPS in a similar manner. Pretreatment of cells with LOX-1 Ab treatment blocked or significantly attenuated these inflammatory responses. Conclusions: These observations based on in vitro observations indicate that LOX-1 via ROS generation plays a key role in mtDNA damage which then leads to NLRP3 inflammasome activation during inflammation.


2019 ◽  
Vol 11 (11) ◽  
pp. 4816-4828 ◽  
Author(s):  
Guannan Wu ◽  
Qingqing Zhu ◽  
Junli Zeng ◽  
Xiaoling Gu ◽  
Yingying Miao ◽  
...  

Cell Research ◽  
2018 ◽  
Vol 28 (12) ◽  
pp. 1202-1202 ◽  
Author(s):  
Rebecca C. Coll ◽  
Caroline L. Holley ◽  
Kate Schroder

Author(s):  
Lu Xu ◽  
Jingyang Zhou ◽  
Jinhui Che ◽  
Haihong Wang ◽  
Weizhong Yang ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is typified by accumulating excess liver triacylglycerol, inflammation, and liver dysfunction. This study was aimed to investigate the role of mitochondrial DNA synthesis-induced activation of Absent in melanoma 2 (AIM2) inflammasome and pyroptosis in NAFLD. Mice were raised on a high-fat diet for 24 weeks to establish NAFLD models. F4/80 immunofluorescence was performed to reflect the inflammatory response in the liver of mice. Western blot, ELISA, and immunofluorescence were adopted to determine the expression of AIM2 inflammasome-related proteins and factors. EdU immunofluorescence was applied for the examination of mitochondrial DNA expression and flow cytometry for cell pyroptosis. Agarose gel electrophoresis was used to detect the integrity of extracted mouse mitochondrial DNA (mtDNA). The levels of AIM2 inflammasome-related proteins in the liver and the levels of IL-1β and IL-18 in serum were elevated in high-fat diet-induced NAFLD mice. AIM2 inflammasome activation and pyroptosis were triggered, and suppressed activation of AIM2 inflammasome alleviated the inflammation and pyroptosis in the liver of NAFLD mice. Mitochondria were severely damaged and mtDNA was synthesized after NAFLD modeling. Further, mtDNA treatment could promote palmitate (PA)-induced activation of AIM2 inflammasome and pyroptosis. Moreover, inhibition of IRF1 gene alleviated PA-induced AIM2 inflammasome activation and pyroptosis. In conclusion, mitochondrial DNA synthesis could enable AIM2 inflammasome activation and induce the hepatocyte pyroptosis, thereby exacerbating NAFLD.


Sign in / Sign up

Export Citation Format

Share Document