msu crystals
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 61)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Arwa Fadıl Haqi BALLUR ◽  
Eyup ALTINOZ ◽  
Gurkan YİGİTTURK ◽  
Melike Ozgul Onal ◽  
Hulya ELBE ◽  
...  

Abstract Gout is an inflammatory arthritis characterized by the deposition of monosodium urate (MSU) crystals in the joints or soft tissue. MSU crystals are potent inflammation inducers. Melatonin (MLT) is a powerful endogenous anti-inflammatory agent and effective in reducing cellular damage. In the present study, possible underlying mechanisms associated with anti-inflammatory and anti-oxidative effects were investigated in rats with gouty arthritis and melatonin deprivation treated with MLT. Fifty-six rats were divided into seven groups: control, sham control, pinealectomy (PNX), MSU (On the 30th day, single dose 20 mg/ml, intraperitoneal), MSU+MLT (10 mg/kg/day for 30 days, intraperitoneal), MSU+PINX and MSU+PINX+MLT. PNX procedure was performed on the first day of the study. As compared to the controls, the results showed that MSU administration caused significant increases in oxidative stress parameters (malondialdehyde and total oxidant status). Besides, significant decreases in antioxidant defense systems (glutathione, superoxide dismutase and total antioxidant status were observed. A statistically significant increase was found in the mean histopathological damage score in the groups that received MSU injection. It was found that histopathological changes were significantly reduced in the MSU+MLT group given MLT. In our study, it was determined that many histopathological changes, as well as swelling and temperature increase in the joint, which are markers of inflammation, were significantly reduced with MLT supplementation. These results suggest that melatonin ameliorates MSU-induced gout in the rat through inhibition of oxidative stress and proinflammatory cytokine production.


2021 ◽  
Author(s):  
◽  
Stefanie Steiger

<p>Gout is a painful form of inflammatory arthritis that is caused by the deposition of monosodium urate (MSU) crystals in the joints. MSU crystals trigger a local inflammatory response initiated by resident macrophages followed by a large infiltration of leukocytes. The spontaneous resolution of acute gout is associated with the production of transforming growth factor β1 (TGFβ1). The overall objectives of this thesis were to investigate mechanisms that lead to TGFβ1 production and contribute to the resolution of acute gout, the effect of TGFβ1 on the functional phenotype of differentiated macrophages, and possible changes in surface marker expression by macrophages in response to MSU crystals.  To determine macrophage-independent sources of TGFβ1 during the resolution of acute gout and how TGFβ1 production altered MSU crystal-recruited neutrophil functions, neutrophils were purified from MSU crystal-treated mice when levels of TGFβ1 were high. MSU crystal-recruited neutrophils and circulating blood neutrophils were identified as TGFβ1⁺ cells. The mechanism for TGFβ1 production by neutrophils was associated with their ability to phagocytose apoptotic neutrophils. TGFβ1 produced by canibalising neutrophils inhibited both respiratory burst and interleukin-1β (IL-1β) production by MSU crystal-activated neutrophils ex vivo. Importantly, neutrophils from MSU crystal-challenged mice treated with TGFβ1 neutralising antibody in vivo produced elevated levels of superoxide but neutrophil IL-1β production was unaffected. These results show that TGFβ1 produced by canibalising neutrophils can actively suppress neutrophil inflammatory functions and therefore make a significant contribution towards the resolution of gouty inflammation.  To investigate the effect of TGFβ1 on macrophage differentiation in vitro, granulocyte macrophage colony-stimulating factor (GM-CSF) bone marrow macrophages (GM-BMMs) and macrophage colony-stimulating factor (M-CSF) bone marrow macrophages (M-BMMs) were generated in the presence of TGFβ1. TGFβ1 was found to drive a hyper-inflammatory GM-BMM phenotype, while contributing to the differentiation of a hypo-inflammatory M-BMM phenotype specifically in response to MSU crystals. Increased IL-1β production by TGFβ1-differentiated GM-BMMs was associated with enhanced NOD like receptor family, pyrin domain-containing 3 (NLRP3) in ammasome activation and caspase 1/caspase 8 interaction, and a down-regulation of receptor-interacting serine/threonine-protein kinase 3 (RIP3) triggered by MSU crystals. At the same, TGFβ1 inhibited antigen-specific T cell proliferation by GM-BMMs. In contrast, TGFβ1-treated M-BMMs down-regulated the expression of active IL-1β that correlated with decreased IL-1β production, and upregulated RIP3 expression in response to MSU crystals. These data indicate that TGFβ1-treated GM-BMMs exhibited a hyper-inflammatory response to MSU crystal stimulation, whereas M-BMMs were found to be hypo-responsive.  Macrophages were found to upregulate the surface marker NK1.1, which is primarily expressed on natural killer (NK) cells, and occured as a consequence of phagocytosis. Following phagocytosis of MSU crystals, activated macrophages produced IL-1β and tumour necrosis factor ⍺ (TNF⍺), which triggered the upregulation of NK1.1 expression. Macrophage NK1.1 expression is an activation-driven event specifc to MSU crystals. However, phagocytosis of apoptotic neutrophils also triggered the upregulation of NK1.1 by macrophages, a non-inflammatory event that is characteristic for the resolution of acute inflammation. These findings suggest that macrophages may develop NK cell-like properties initiated by an activation-driven or apoptotic cell clearance mechanism.  Taken together, the results of this thesis indicate that canibalising neutrophils self-regulate their inflammatory functions via TGFβ1 and that TGFβ1 drives a hyper-inflammatory GM-BMM phenotype, while shutting down inflammatory functions of M-BMMs. These data highlight a regulatory role for TGFβ1 during acute gouty inflammation.</p>


2021 ◽  
Author(s):  
◽  
Stefanie Steiger

<p>Gout is a painful form of inflammatory arthritis that is caused by the deposition of monosodium urate (MSU) crystals in the joints. MSU crystals trigger a local inflammatory response initiated by resident macrophages followed by a large infiltration of leukocytes. The spontaneous resolution of acute gout is associated with the production of transforming growth factor β1 (TGFβ1). The overall objectives of this thesis were to investigate mechanisms that lead to TGFβ1 production and contribute to the resolution of acute gout, the effect of TGFβ1 on the functional phenotype of differentiated macrophages, and possible changes in surface marker expression by macrophages in response to MSU crystals.  To determine macrophage-independent sources of TGFβ1 during the resolution of acute gout and how TGFβ1 production altered MSU crystal-recruited neutrophil functions, neutrophils were purified from MSU crystal-treated mice when levels of TGFβ1 were high. MSU crystal-recruited neutrophils and circulating blood neutrophils were identified as TGFβ1⁺ cells. The mechanism for TGFβ1 production by neutrophils was associated with their ability to phagocytose apoptotic neutrophils. TGFβ1 produced by canibalising neutrophils inhibited both respiratory burst and interleukin-1β (IL-1β) production by MSU crystal-activated neutrophils ex vivo. Importantly, neutrophils from MSU crystal-challenged mice treated with TGFβ1 neutralising antibody in vivo produced elevated levels of superoxide but neutrophil IL-1β production was unaffected. These results show that TGFβ1 produced by canibalising neutrophils can actively suppress neutrophil inflammatory functions and therefore make a significant contribution towards the resolution of gouty inflammation.  To investigate the effect of TGFβ1 on macrophage differentiation in vitro, granulocyte macrophage colony-stimulating factor (GM-CSF) bone marrow macrophages (GM-BMMs) and macrophage colony-stimulating factor (M-CSF) bone marrow macrophages (M-BMMs) were generated in the presence of TGFβ1. TGFβ1 was found to drive a hyper-inflammatory GM-BMM phenotype, while contributing to the differentiation of a hypo-inflammatory M-BMM phenotype specifically in response to MSU crystals. Increased IL-1β production by TGFβ1-differentiated GM-BMMs was associated with enhanced NOD like receptor family, pyrin domain-containing 3 (NLRP3) in ammasome activation and caspase 1/caspase 8 interaction, and a down-regulation of receptor-interacting serine/threonine-protein kinase 3 (RIP3) triggered by MSU crystals. At the same, TGFβ1 inhibited antigen-specific T cell proliferation by GM-BMMs. In contrast, TGFβ1-treated M-BMMs down-regulated the expression of active IL-1β that correlated with decreased IL-1β production, and upregulated RIP3 expression in response to MSU crystals. These data indicate that TGFβ1-treated GM-BMMs exhibited a hyper-inflammatory response to MSU crystal stimulation, whereas M-BMMs were found to be hypo-responsive.  Macrophages were found to upregulate the surface marker NK1.1, which is primarily expressed on natural killer (NK) cells, and occured as a consequence of phagocytosis. Following phagocytosis of MSU crystals, activated macrophages produced IL-1β and tumour necrosis factor ⍺ (TNF⍺), which triggered the upregulation of NK1.1 expression. Macrophage NK1.1 expression is an activation-driven event specifc to MSU crystals. However, phagocytosis of apoptotic neutrophils also triggered the upregulation of NK1.1 by macrophages, a non-inflammatory event that is characteristic for the resolution of acute inflammation. These findings suggest that macrophages may develop NK cell-like properties initiated by an activation-driven or apoptotic cell clearance mechanism.  Taken together, the results of this thesis indicate that canibalising neutrophils self-regulate their inflammatory functions via TGFβ1 and that TGFβ1 drives a hyper-inflammatory GM-BMM phenotype, while shutting down inflammatory functions of M-BMMs. These data highlight a regulatory role for TGFβ1 during acute gouty inflammation.</p>


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A753-A753
Author(s):  
Xiaoyu An ◽  
Kaixia Lian ◽  
Jia Zheng ◽  
Fei Jian ◽  
Henry Li ◽  
...  

BackgroundGout is a chronic inflammatory disease featuring the deposition of monosodium urate (MSU) crystals in the synovial fluid of patients, followed by NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome activation and bioactive IL-1β release, which recruits neutrophils to the local inflammation sites. Blocking IL-1β function is becoming a a potent therapeutic approach for gout and gouty arthritis. Conventional MSU-induced peritonitis in C57BL/6 mice provides a simple and rapid evaluation of therapeutics targeting inflammasome activation. However, this murine model has limitations when it comes to the evaluation of human-specific antibodies, for example, anti-human IL-1β (anti-hIL-1β) monoclonal antibodies (mAb). Thus, a murine model to assess the efficacy of anti-hIL-1β mAb is needed. We have developed a hIL-1β knock-in mouse model (hIL-1β HuGEMM™), which is able to facilitate the pre-clinical evaluation of drugs targeting specific human biological molecules especially when mouse ortholog is not available. Therefore, an MSU crystals induced peritonitis model using hIL-1β HuGEMM™ mice provides a robust model to evaluate therapies targeting hIL-1β.MethodsMSU crystals were injected intraperitoneally into human IL-1β (hIL-1β) knock-in mice, where the coding sequence of mouse IL-1β was replaced by hIL-1β. Prior to MSU crystal administration, mice received treatment of either vehicle or anti-hIL-1β antibody. Six hours facilitate post MSU crystal injection, serum and lavage flushed with PBS were collected. Subsequently, cytokine protein levels in the serum were determined by MSD, and the population of polymorphonuclear leukocytes (PMNs) (live CD11b+ Ly-6GHi cells) in the lavage was analysed by flow cytometry.ResultsThe vehicle treatment group showed a dramatic increase in hIL-1β secretion and PMN leukocytes, in comparison to the group that did not receive MSU, which suggests a successful induction of acute inflammatory response in the peritoneal cavity. In contrast, mice that received a single administration of anti-hIL-1β antibody 24 hours prior to MSU injection exhibited a significantly lower level of hIL-1β when compared to the vehicle treatment group, which implies that the anti-hIL-1β mAb efficaciously neutralized hIL-1β secretion. In addition, TNF-α and IL-6, two further cytokines downstream of IL-1β, were significantly reduced in the anti-hIL-1β mAb treatment group. However, the PMN leukocyte infiltration in the anti-hIL-1β mAb treatment group did not change in comparison to the vehicle group.ConclusionsIn this study, an MSU crystals-induced peritonitis model was successfully established in hIL-1β HuGEMM mice, which has the potential to evaluate immune therapeutics with anti-hIL-1β blockades.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josef Scholz ◽  
Nathalie Roiser ◽  
Eva-Maria Braig ◽  
Christian Petrich ◽  
Lorenz Birnbacher ◽  
...  

AbstractGout is the most common form of inflammatory arthritis, caused by the deposition of monosodium urate (MSU) crystals in peripheral joints and tissue. Detection of MSU crystals is essential for definitive diagnosis, however the gold standard is an invasive process which is rarely utilized. In fact, most patients are diagnosed or even misdiagnosed based on manifested clinical signs, as indicated by the unchanged premature mortality among gout patients over the past decade, although effective treatment is now available. An alternative, non-invasive approach for the detection of MSU crystals is X-ray dark-field radiography. In our work, we demonstrate that dark-field X-ray radiography can detect naturally developed gout in animals with high diagnostic sensitivity and specificity based on the in situ measurement of MSU crystals. With the results of this study as a potential basis for further research, we believe that X-ray dark-field radiography has the potential to substantially improve gout diagnostics.


2021 ◽  
Author(s):  
Nathalie Accart ◽  
Janet Dawson ◽  
Michael Obrecht ◽  
Christian Lambert ◽  
Manuela Flueckiger ◽  
...  

Abstract Effects of repeated injection of monosodium urate (MSU) crystals, in combination with lipopolysaccharide (LPS), into rat knee joints every two weeks for a maximum of five administrations were investigated. Joint swelling, nociception and hard/soft tissue changes were assessed longitudinally by non-invasive imaging. MSU crystals induced joint swelling, synovial membrane thickening, fibrosis of the infrapatellar fat pad, tidemark breaching, and cartilage invasion by inflammatory cells. Several inflammatory proteins were present in synovial fluid. A higher sensitivity to mechanical stimulus was detected in paws of limbs receiving MSU/LPS compared to saline-injected limbs. In MSU/LPS-challenged joints, magnetic resonance imaging (MRI) revealed increased synovial fluid volume in the posterior region of the joint, alterations in the infrapatellar fat pad reflecting a progressive decrease of fat volume and fibrosis formation, and a significant increase in the relaxation time T2 in femoral cartilage, consistent with a reduction of proteoglycan content. MRI also showed cyst formation in the tibia, femur remodeling, and T2 reductions in extensor muscles consistent with fibrosis development. Repeated intra-articular MSU/LPS injections in the rat knee joint induced pathology in multiple tissues and may be a useful means to investigate the relationship between urate crystal deposition and the development of degenerative joint disease.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1919
Author(s):  
Huijeong Ahn ◽  
Gilyoung Lee ◽  
Geun-Shik Lee

Gout is a recurrent and chronic form of arthritis caused by the deposition of monosodium urate (MSU) crystals in the joints. Macrophages intake MSU crystals, the trigger for NLRP3 inflammasome activation, which leads to the release of interleukin (IL)-1β and results in the flaring of gout. The effects of temperature, an environmental factor for MSU crystallization, on IL-1β secretion have not been well studied. This study examined the effects of temperature on inflammasome activation. Specific triggers activated canonical inflammasomes (NLRP3, NLRC4, and AIM2) in murine macrophages at various temperatures (25, 33, 37, 39, and 42 °C). The maturation of IL-1β and caspase-1 was measured as an indicator for inflammasome activation. As expected, the optimal temperature of inflammasome activation was 37 °C. The MSU crystal-mediated activation of inflammasome increased at temperatures lower than 37 °C and decreased at higher temperatures. MSU crystals at lower temperatures enhanced IL-1β secretion via the NLRP3 inflammasome pathway. A lower temperature promoted the formation of MSU crystals without changing phagocytosis. Overall, lower temperatures form more MSU crystals and enhance NLRP3 inflammasome activation. In light of these findings, it is possible that hyperthermia therapy may reduce gout flaring.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
M. Badii ◽  
O. I. Gaal ◽  
M. C. Cleophas ◽  
V. Klück ◽  
R. Davar ◽  
...  

Abstract Objectives Hyperuricemia is a metabolic condition central to gout pathogenesis. Urate exposure primes human monocytes towards a higher capacity to produce and release IL-1β. In this study, we assessed the epigenetic processes associated to urate-mediated hyper-responsiveness. Methods Freshly isolated human peripheral blood mononuclear cells or enriched monocytes were pre-treated with solubilized urate and stimulated with LPS with or without monosodium urate (MSU) crystals. Cytokine production was determined by ELISA. Histone epigenetic marks were assessed by sequencing immunoprecipitated chromatin. Mice were injected intraarticularly with MSU crystals and palmitate after inhibition of uricase and urate administration in the presence or absence of methylthioadenosine. DNA methylation was assessed by methylation array in whole blood of 76 participants with normouricemia or hyperuricemia. Results High concentrations of urate enhanced the inflammatory response in vitro in human cells and in vivo in mice, and broad-spectrum methylation inhibitors reversed this effect. Assessment of histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine 27 acetylation (H3K27ac) revealed differences in urate-primed monocytes compared to controls. Differentially methylated regions (e.g. HLA-G, IFITM3, PRKAB2) were found in people with hyperuricemia compared to normouricemia in genes relevant for inflammatory cytokine signaling. Conclusion Urate alters the epigenetic landscape in selected human monocytes or whole blood of people with hyperuricemia compared to normouricemia. Both histone modifications and DNA methylation show differences depending on urate exposure. Subject to replication and validation, epigenetic changes in myeloid cells may be a therapeutic target in gout.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao-fei Fan ◽  
Xing-yue Fang ◽  
Hao-lin Wu ◽  
Yi-qian Xu ◽  
Li-chong Gong ◽  
...  

Abstract Background Gout is initiated by the precipitation of monosodium urate (MSU) crystals within the joints and soft tissues, and it can eventually cause acute or chronic arthritis. MSU crystals trigger, amplify, and maintain a strong inflammatory response through promoting proinflammatory activity. In this study, the therapeutic effects of Stephania hainanensis (S. hainanensis) total alkaloid (SHA) were tested and evaluated on MSU-induced acute gouty arthritis in a mouse model. Methods After oral administration of SHA (10 or 20 mg/kg) or the antigout medicine colchicine (0.5 mg/kg) once daily for 3 consecutive days, MSU crystals suspended in saline (2.5 mg/50 μl) were intradermally injected into the right paw of the mice. Then, SHA and colchicine were administered for another 2 days. During this period, swelling of the ankle and clinical scores were measured at 12, 24, and 48 h postinjection. After the mice were euthanized, inflammatory cytokine expression and paw tissue inflammation-related gene and protein expression, and a histopathological analysis was performed. Results SHA had obvious therapeutic effects on MSU-induced acute gouty arthritis in mice. SHA alleviated ankle swelling and inhibited the production of cytokines, such as IL-1β and TNF-α. In addition, NLRP3, Caspase-1 and IL-1β, which are activated by MSU were also suppressed by SHA. The histological evaluation showed that SHA relieved the infiltration of inflammation around the ankle. Conclusions These results suggest that SHA is capable of anti-inflammatory activities and may be useful for treating gouty arthritis.


Sign in / Sign up

Export Citation Format

Share Document