Faculty Opinions recommendation of A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly.

Author(s):  
Tanmay Lele ◽  
Srujana Neelam
2018 ◽  
Vol 132 (4) ◽  
pp. jcs219451 ◽  
Author(s):  
Sagardip Majumder ◽  
Patrick T. Willey ◽  
Maxwell S. DeNies ◽  
Allen P. Liu ◽  
G. W. Gant Luxton

2018 ◽  
Author(s):  
Sagardip Majumder ◽  
Patrick T. Willey ◽  
Maxwell S. DeNies ◽  
Allen P. Liu ◽  
G.W. Gant Luxton

ABSTRACTThe linker of nucleoskeleton and cytoskeleton (LINC) is a conserved nuclear envelope-spanning molecular bridge that is responsible for the mechanical integration of the nucleus with the cytoskeleton. LINC complexes are formed by a transluminal interaction between the outer and inner nuclear membrane KASH and SUN proteins, respectively. Despite recent structural insights, our mechanistic understanding of LINC complex assembly remains limited by the lack of an experimental system for its in vitro reconstitution and manipulation. Here, we describe artificial nuclear membranes (ANMs) as a synthetic biology platform based on mammalian cell-free expression for the rapid reconstitution of SUN proteins in supported lipid bilayers. We demonstrate that SUN1 and SUN2 are oriented in ANMs with solvent-exposed C-terminal KASH-binding SUN domains. We also find that SUN2 possesses a single transmembrane domain, while SUN1 possesses three. Finally, SUN protein-containing ANMs bind synthetic KASH peptides, thereby reconstituting the LINC complex core. This work represents the first in vitro reconstitution of KASH-binding SUN proteins in supported lipid bilayers using cell-free expression, which will be invaluable for testing proposed models of LINC complex assembly and its regulation.


2019 ◽  
Vol 132 (10) ◽  
pp. jcs234153
Author(s):  
Sagardip Majumder ◽  
Patrick T. Willey ◽  
Maxwell S. DeNies ◽  
Allen P. Liu ◽  
G. W. Gant Luxton

2021 ◽  
Author(s):  
Kwang-Ho Hur ◽  
Jared W. Hennen ◽  
Cosmo A Saunders ◽  
Amy Schoenhoefen ◽  
Patrick T Willey ◽  
...  

Chemical and mechanical nuclear-cytoplasmic communication across the nuclear envelope (NE) is largely mediated by the nuclear pore complex (NPC) and the linker of nucleoskeleton and cytoskeleton (LINC) complex, respectively. While NPC and LINC complex assembly are functionally related, the mechanisms responsible for this relationship remain poorly understood. Here, we investigated how the luminal ATPases associated with various cellular activities (AAA+) protein torsinA promotes NPC and LINC complex assembly using fluorescence fluctuation spectroscopy (FFS), quantitative photobleaching analyses, and functional cellular assays. We report that torsinA controls LINC complex-dependent nuclear-cytoskeletal coupling as a soluble hexameric AAA+ protein and interphase NPC biogenesis as a membrane-associated helical polymer. These findings help resolve the conflicting models of torsinA function that were recently proposed based on in vitro structural studies. Our results will enable future studies of the role of defective nuclear-cytoplasmic communication in DYT1 dystonia and other diseases caused by mutations in torsinA.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
A Sarrion-Perdigones ◽  
M Vazquez-Vilar ◽  
J Palaci ◽  
A Granell ◽  
D Orzáez

Somatechnics ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 250-262 ◽  
Author(s):  
Oron Catts ◽  
Ionat Zurr

The paper discusses and critiques the concept of the single engineering paradigm. This concepts allude to a future in which the control of matter and life, and life as matter, will be achieved by applying engineering principles; through nanotechnology, synthetic biology and, as some suggest, geo-engineering, cognitive engineering and neuro-engineering. We outline some issues in the short history of the field labelled as Synthetic Biology. Furthermore; we examine the way engineers, scientists, designers and artists are positioned and articulating the use of the tools of Synthetic Biology to expose some of the philosophical, ethical and political forces and considerations of today as well as some future scenarios. We suggest that one way to enable the possibilities of alternative frames of thought is to open up the know-how and the access to these technologies to other disciplines, including artistic.


2016 ◽  
Vol 23 (2) ◽  
pp. 159-174
Author(s):  
William Daley
Keyword(s):  

2018 ◽  
Vol 27 (3) ◽  
pp. i-vii
Author(s):  
Luisa Damiano ◽  
◽  
Yutetsu Kuruma ◽  
Pasquale Stano ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document