plant synthetic biology
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Savio S. Ferreira ◽  
Mauricio S. Antunes

Phenylpropanoids comprise a large class of specialized plant metabolites with many important applications, including pharmaceuticals, food nutrients, colorants, fragrances, and biofuels. Therefore, much effort has been devoted to manipulating their biosynthesis to produce high yields in a more controlled manner in microbial and plant systems. However, current strategies are prone to significant adverse effects due to pathway complexity, metabolic burden, and metabolite bioactivity, which still hinder the development of tailor-made phenylpropanoid biofactories. This gap could be addressed by the use of biosensors, which are molecular devices capable of sensing specific metabolites and triggering a desired response, as a way to sense the pathway’s metabolic status and dynamically regulate its flux based on specific signals. Here, we provide a brief overview of current research on synthetic biology and metabolic engineering approaches to control phenylpropanoid synthesis and phenylpropanoid-related biosensors, advocating for the use of biosensors and genetic circuits as a step forward in plant synthetic biology to develop autonomously-controlled phenylpropanoid-producing plant biofactories.


2021 ◽  
Vol 12 ◽  
Author(s):  
Collin R. Barnum ◽  
Benjamin J. Endelman ◽  
Patrick M. Shih

Plants offer a vast source of bioactive chemicals with the potential to improve human health through the prevention and treatment of disease. However, many potential therapeutics are produced in small amounts or in species that are difficult to cultivate. The rapidly evolving field of plant synthetic biology provides tools to capitalize on the inventive chemistry of plants by transferring metabolic pathways for therapeutics into far more tenable plants, increasing our ability to produce complex pharmaceuticals in well-studied plant systems. Plant synthetic biology also provides methods to enhance the ability to fortify crops with nutrients and nutraceuticals. In this review, we discuss (1) the potential of plant synthetic biology to improve human health by generating plants that produce pharmaceuticals, nutrients, and nutraceuticals and (2) the technological challenges hindering our ability to generate plants producing health-promoting small molecules.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arjun Khakhar ◽  
Daniel F. Voytas

The tools of synthetic biology have enormous potential to help us uncover the fundamental mechanisms controlling development and metabolism in plants. However, their effective utilization typically requires transgenesis, which is plagued by long timescales and high costs. In this review we explore how transgenesis can be minimized by delivering foreign genetic material to plants with systemically mobile and persistent vectors based on RNA viruses. We examine the progress that has been made thus far and highlight the hurdles that need to be overcome and some potential strategies to do so. We conclude with a discussion of biocontainment mechanisms to ensure these vectors can be used safely as well as how these vectors might expand the accessibility of plant synthetic biology techniques. RNA vectors stand poised to revolutionize plant synthetic biology by making genetic manipulation of plants cheaper and easier to deploy, as well as by accelerating experimental timescales from years to weeks.


2021 ◽  
Author(s):  
Andreas I. Andreou ◽  
Jessica Nirkko ◽  
Marisol Ochoa Villarreal ◽  
Naomi Nakayama

Plant synthetic biology is a fast-evolving field that employs engineering principles to empower research and bioproduction in plant systems. Nevertheless, in the whole synthetic biology landscape, plant systems lag compared to microbial and mammalian systems. When it comes to multigene delivery to plants, the predictability of the outcome is decreased since it depends on three different chassis: E.coli, Agrobacterium, and the plant species. Here we aimed to develop standardised and streamlined tools for genetic engineering in plant synthetic biology. We have devised Mobius Assembly for Plant Systems (MAPS), a user-friendly Golden Gate Assembly system for fast and easy generation of complex DNA constructs. MAPS is based on a new group of small plant binary vectors (pMAPs) that contains an origin of replication from a cryptic plasmid of Paracoccuspantotrophus. The functionality of the pMAP vectors was confirmed by transforming the MM1 cell culture, demonstrating for the first time that plant transformation is dependent on the Agrobacterium strains and plasmids; plasmid stability was highly dependent on the plasmid and bacterial strain. We made a library of new short promoters and terminators and characterised them using a high-throughput protoplast expression assay. Our results underscored the strong influence of terminators in gene expression, and they altered the strength of promoters in some combinations and indicated the presence of synergistic interactions between promoters and terminators. Overall this work will further facilitate plant synthetic biology and contribute to improving its predictability, which is challenged by combinatorial interactions among the genetic parts, vectors, and chassis.


2021 ◽  
pp. 107729
Author(s):  
Pragya Tiwari ◽  
Tushar Khare ◽  
Varsha Shriram ◽  
Hanhong Bae ◽  
Vinay Kumar

2020 ◽  
Vol 24 ◽  
pp. 100186
Author(s):  
Dhirendra Kumar ◽  
Yves Van de Peer

Sign in / Sign up

Export Citation Format

Share Document