scholarly journals Faculty Opinions recommendation of PreBötzinger complex neurons drive respiratory modulation of blood pressure and heart rate.

Author(s):  
Ana Takakura
2020 ◽  
Author(s):  
Clément Menuet ◽  
Angela A Connelly ◽  
Jaspreet K Bassi ◽  
Mariana R Melo ◽  
Sheng Le ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Clément Menuet ◽  
Angela A Connelly ◽  
Jaspreet K Bassi ◽  
Mariana R Melo ◽  
Sheng Le ◽  
...  

Heart rate and blood pressure oscillate in phase with respiratory activity. A component of these oscillations is generated centrally, with respiratory neurons entraining the activity of pre-sympathetic and parasympathetic cardiovascular neurons. Using a combination of optogenetic inhibition and excitation in vivo and in situ in rats, as well as neuronal tracing, we demonstrate that preBötzinger Complex (preBötC) neurons, which form the kernel for inspiratory rhythm generation, directly modulate cardiovascular activity. Specifically, inhibitory preBötC neurons modulate cardiac parasympathetic neuron activity whilst excitatory preBötC neurons modulate sympathetic vasomotor neuron activity, generating heart rate and blood pressure oscillations in phase with respiration. Our data reveal yet more functions entrained to the activity of the preBötC, with a role in generating cardiorespiratory oscillations. The findings have implications for cardiovascular pathologies, such as hypertension and heart failure, where respiratory entrainment of heart rate is diminished and respiratory entrainment of blood pressure exaggerated.


2006 ◽  
Vol 84 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Richard S.T. Leung ◽  
John S. Floras ◽  
T. Douglas Bradley

Cheyne–Stokes respiration (CSR) is associated with increased mortality among patients with heart failure. However, the specific link between CSR and mortality remains unclear. One possibility is that CSR results in excitation of the sympathetic nervous system. This review relates evidence that CSR exerts acute effects on the autonomic nervous system during sleep, and thereby influences a number of cardiovascular phenomena, including heart rate, blood pressure, atrioventricular conduction, and ventricular ectopy. In patients in sinus rhythm, heart rate and blood pressure oscillate during CSR in association with respiratory oscillations, such that both peak heart rate and blood pressure occur during the hyperpneic phase. Inhalation of CO2 abolishes both CSR and the associated oscillations in heart rate and blood pressure. In contrast, O2 inhalation sufficient to eliminate hypoxic dips has no significant effect on CSR, heart rate, or blood pressure. In patients with atrial fibrillation, ventricular rate oscillates in association with CSR despite the absence of within-breath respiratory arrhythmia. The comparison of RR intervals between the apneic and hyperpneic phases of CSR indicates that this breathing disorder exerts its effect on ventricular rate by inducing cyclical changes in atrioventricular node conduction properties. In patients with frequent ventricular premature beats (VPBs), VPBs occur more frequently during the hyperpneic phase than the apneic phase of CSR. VPB frequency is also higher during periods of CSR than during periods of regular breathing, with or without correction of hypoxia. In summary, CSR exerts multiple effects on the cardiovascular system that are likely manifestations of respiratory modulation of autonomic activity. It is speculated that the rhythmic oscillations in autonomic tone brought about by CSR may ultimately contribute to the sympatho-excitation and increased mortality long observed in patients with heart failure and CSR.


EP Europace ◽  
2003 ◽  
Vol 4 (Supplement_2) ◽  
pp. B169-B169
Author(s):  
F. Beckers ◽  
B. Verheyden ◽  
T. Vanherpe ◽  
A.E. Aubert

Sign in / Sign up

Export Citation Format

Share Document