scholarly journals Faculty Opinions recommendation of Repair of an Attenuated Low-Passage Murine Cytomegalovirus Bacterial Artificial Chromosome Identifies a Novel Spliced Gene Essential for Salivary Gland Tropism.

Author(s):  
Rhonda Cardin ◽  
Brent Stanfield
2006 ◽  
Vol 87 (3) ◽  
pp. 509-517 ◽  
Author(s):  
B. Dewals ◽  
C. Boudry ◽  
L. Gillet ◽  
N. Markine-Goriaynoff ◽  
L. de Leval ◽  
...  

Alcelaphine herpesvirus 1 (AlHV-1), carried asymptomatically by wildebeest, causes malignant catarrhal fever (MCF) following cross-species transmission to a variety of susceptible species of the order Artiodactyla. The study of MCF pathogenesis has been impeded by an inability to produce recombinant virus, mainly due to the fact that AlHV-1 becomes attenuated during passage in culture. In this study, these difficulties were overcome by cloning the entire AlHV-1 genome as a stable, infectious and pathogenic bacterial artificial chromosome (BAC). A modified loxP-flanked BAC cassette was inserted in one of the two large non-coding regions of the AlHV-1 genome. This insertion allowed the production of an AlHV-1 BAC clone stably maintained in bacteria and able to regenerate virions when transfected into permissive cells. The loxP-flanked BAC cassette was excised from the genome of reconstituted virions by growing them in permissive cells stably expressing Cre recombinase. Importantly, BAC-derived AlHV-1 virions replicated comparably to the virulent (low-passage) AlHV-1 parental strain and induced MCF in rabbits that was indistinguishable from that of the virulent parental strain. The availability of the AlHV-1 BAC is an important advance for the study of MCF that will allow the identification of viral genes involved in MCF pathogenesis, as well as the production of attenuated recombinant candidate vaccines.


2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Alec James Redwood ◽  
Laura Lee Masters ◽  
Baca Chan ◽  
Shay Leary ◽  
Cathy Forbes ◽  
...  

ABSTRACT The cloning of herpesviruses as bacterial artificial chromosomes (BACs) has revolutionized the study of herpesvirus biology, allowing rapid and precise manipulation of viral genomes. Several clinical strains of human cytomegalovirus (HCMV) have been cloned as BACs; however, no low-passage strains of murine CMV (MCMV), which provide a model mimicking these isolates, have been cloned. Here, the low-passage G4 strain of was BAC cloned. G4 carries an m157 gene that does not ligate the natural killer (NK) cell-activating receptor, Ly49H, meaning that unlike laboratory strains of MCMV, this virus replicates well in C57BL/6 mice. This BAC clone exhibited normal replication during acute infection in the spleen and liver but was attenuated for salivary gland tropism. Next-generation sequencing revealed a C-to-A mutation at nucleotide position 188422, located in the 3′ untranslated region of sgg1, a spliced gene critical for salivary gland tropism. Repair of this mutation restored tropism for the salivary glands. Transcriptional analysis revealed a novel spliced gene within the sgg1 locus. This small open reading frame (ORF), sgg1.1, starts at the 3′ end of the first exon of sgg1 and extends exon 2 of sgg1. This shorter spliced gene is prematurely terminated by the nonsense mutation at nt 188422. Sequence analysis of tissue culture-passaged virus demonstrated that sgg1.1 was stable, although other mutational hot spots were identified. The G4 BAC will allow in vivo studies in a broader range of mice, avoiding the strong NK cell responses seen in B6 mice with other MCMV BAC-derived MCMVs. IMPORTANCE Murine cytomegalovirus (MCMV) is widely used as a model of human CMV (HCMV) infection. However, this model relies on strains of MCMV that have been serially passaged in the laboratory for over four decades. These laboratory strains have been cloned as bacterial artificial chromosomes (BACs), which permits rapid and precise manipulation. Low-passage strains of MCMV add to the utility of the mouse model of HCMV infection but do not exist as cloned BACs. This study describes the first such low-passage MCMV BAC. This BAC-derived G4 was initially attenuated in vivo, with subsequent full genomic sequencing revealing a novel spliced transcript required for salivary gland tropism. These data suggest that MCMV, like HCMV, undergoes tissue culture adaptation that can limit in vivo growth and supports the use of BAC clones as a way of standardizing viral strains and minimizing interlaboratory strain variation.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 954
Author(s):  
Ruth Cruz-cosme ◽  
Najealicka Armstrong ◽  
Qiyi Tang

The M112-113 gene is the first early gene of the murine cytomegalovirus (MCMV), and its expression is activated by the immediate-early 3 (IE3) protein during MCMV infection in permissive cells. At its 5′ terminus, a 10-bp motif, upstream of the TATA box of the M112-113 gene, was identified to bind to IE3, and it is necessary for IE3 to activate M112-113 gene expression (Perez KJ et al. 2013 JVI). At the 3′ terminus of the M112-113 gene, three poly(A) signals (PASs) are arranged closely, forming a PAS cluster. We asked whether it is necessary to have the PAS cluster for the M112-113 gene and wondered which PAS is required or important for M112-113 gene expression. In this study, we mutated one, two, or all three PASs in expressing plasmids. Then, we applied bacterial artificial chromosome (BAC) techniques to mutate PASs in viruses. Gene expression and viral replication were analyzed. We found that not all three PASs are needed for M112-113 gene expression. Moreover, we revealed that just one of the three poly(A)s is enough for MCMV replication. However, the deletion of all three PASs did not kill MCMV, although it significantly attenuated viral replication. Finally, an mRNA stability assay was performed and demonstrated that PASs are important to stabilize M112-113 mRNA. Therefore, we conclude that just one of the PASs of the M112-113 gene is sufficient and important for MCMV replication through the stabilization of M112-113 mRNA.


2012 ◽  
Vol 21 (5) ◽  
pp. 1117-1123 ◽  
Author(s):  
Li Zhang ◽  
Boyu Zhang ◽  
Sang Jun Han ◽  
Amy N. Shore ◽  
Jeffrey M. Rosen ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 76 (1) ◽  
pp. 1
Author(s):  
Ivanete Furo ◽  
Rafael Kretschmer ◽  
Jorge Pereira ◽  
Darren Griffin ◽  
Rebecca O’Connor ◽  
...  

Leucopternis albicollis is a diurnal bird of prey with extensive karyotype reorganization. Chromosome-specific probes from this species have been used successfully to detect intrachromosomal rearrangements in different species of bird since 2010. However, some gaps were detected in this first set of probes. Here, we have obtained a new set of whole chromosome probes in order to improve the previous one; also, we have performed experiments using bacterial artificial chromosome (BAC) from chicken microchromosomes. Our results demonstrated that the microchromosomes were involved in fusion events. In addition, a new nomenclature has been proposed for the new set of probes and some inaccurate data were corrected.


Sign in / Sign up

Export Citation Format

Share Document