mcmv infection
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 43)

H-INDEX

40
(FIVE YEARS 5)

Thorax ◽  
2021 ◽  
pp. thoraxjnl-2021-217001
Author(s):  
Galam Leem ◽  
Minwoo Jeon ◽  
Kun Woo Kim ◽  
Seongju Jeong ◽  
Seong Jin Choi ◽  
...  

BackgroundTumour-unrelated, virus-specific bystander CD8+ T cells were recently shown to be abundant among tumour-infiltrating lymphocytes (TILs). However, their roles in tumour immunity have not been elucidated yet.MethodsWe studied the characteristics of bystander CD8+ TILs from non-small cell lung cancer (NSCLC) tissues (N=66) and their activation by interleukin (IL)-15 to repurpose them for tumour immunotherapy.ResultsWe show that bystander CD8+ TILs specific to various viruses are present in human NSCLC tissues. We stimulated CD8+ TILs ex vivo using IL-15 without cognate antigens and found that IL-15 treatment upregulated NKG2D expression on CD8+ TILs, resulting in NKG2D-dependent production of interferon (IFN)-γ (p=0.0006). Finally, we tested whether IL-15 treatment can control tumour growth in a murine NSCLC model with or without a history of murine cytomegalovirus (MCMV) infection. IL-15 treatment reduced the number of tumour nodules in the lung only in mice with MCMV infection (p=0.0037). We confirmed that MCMV-specific bystander CD8+ TILs produced interferon (IFN)-γ after IL-15 treatment, and that IL-15 treatment in MCMV-infected mice upregulated tumour necrosis factor-α and IFN-γ responsive genes in tumour microenvironment.ConclusionThus, the study demonstrates that bystander CD8+ TILs can be repurposed by IL-15 for tumour immunotherapy.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1531
Author(s):  
Nathan Zangger ◽  
Josua Oderbolz ◽  
Annette Oxenius

CD4 T cells are well known for their supportive role in CD8 T cell and B cell responses during viral infection. However, during murine cytomegalovirus (MCMV) infection in the salivary glands (SGs), CD4 T cells exhibit direct antiviral effector functions to control the infection. In this mucosal organ, opposed to other infected tissues, MCMV establishes a sustained lytic replication that lasts for several weeks. While the protective function of CD4 T cells is exerted through the production of the pro-inflammatory cytokines interferon gamma (IFNγ) and tumor necrosis factor alpha (TNF), the reasons for their markedly delayed control of lytic MCMV infection remain elusive. Here, we review the current knowledge on the dynamics and mechanisms of the CD4 T cell-mediated control of MCMV-infected SGs, including their localization in the SG in relation to MCMV infected cells and other immune cells, their mode of action, and their regulation.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2277
Author(s):  
Dipanwita Mitra ◽  
Mohammad H. Hasan ◽  
John T. Bates ◽  
Gene L. Bidwell ◽  
Ritesh Tandon

Human cytomegalovirus (HCMV) tegument protein pp150 is essential for the completion of the final steps in virion maturation. Earlier studies indicated that three pp150nt (N-terminal one-third of pp150) conformers cluster on each triplex (Tri1, Tri2A and Tri2B), and extend towards small capsid proteins atop nearby major capsid proteins, forming a net-like layer of tegument densities that enmesh and stabilize HCMV capsids. Based on this atomic detail, we designed several peptides targeting pp150nt. Our data show significant reduction in virus growth upon treatment with one of these peptides (pep-CR2) with an IC50 of 1.33 μM and no significant impact on cell viability. Based on 3D modeling, pep-CR2 specifically interferes with the pp150–capsid binding interface. Cells pre-treated with pep-CR2 and infected with HCMV sequester pp150 in the nucleus, indicating a mechanistic disruption of pp150 loading onto capsids and subsequent nuclear egress. Furthermore, pep-CR2 effectively inhibits mouse cytomegalovirus (MCMV) infection in cell culture, paving the way for future animal testing. Combined, these results indicate that CR2 of pp150 is amenable to targeting by a peptide inhibitor, and can be developed into an effective antiviral.


2021 ◽  
Vol 137 ◽  
pp. 94-104
Author(s):  
Kate J. Dixon ◽  
Jason R. Siebert ◽  
Dandan Wang ◽  
Alex M. Abel ◽  
Kaitlin E. Johnson ◽  
...  
Keyword(s):  
Nk Cell ◽  

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 876
Author(s):  
Igor Štimac ◽  
Natalia Jug Vučko ◽  
Gordana Blagojević Zagorac ◽  
Marina Marcelić ◽  
Hana Mahmutefendić Lučin ◽  
...  

Cytomegalovirus (CMV) infection initiates massive rearrangement of cytoplasmic organelles to generate assembly compartment (AC). The earliest events, the establishment of the preAC, are initiated in the early phase as an extensive reorganization of early endosomes (EEs), endosomal recycling compartment (ERC), trans-Golgi network (TGN), and the Golgi. Here, we demonstrate that dynamin inhibitors (Dynasore, Dyngo-4a, MiTMAB, and Dynole-34-2) block the establishment of the preAC in murine CMV (MCMV) infected cells. In this study, we extensively analyzed the effect of Dynasore on the Golgi reorganization sequence into the outer preAC. We also monitored the development of the inner preAC using a set of markers that define EEs (Rab5, Vps34, EEA1, and Hrs), the EE-ERC interface (Rab10), the ERC (Rab11, Arf6), three layers of the Golgi (GRASP65, GM130, Golgin97), and late endosomes (Lamp1). Dynasore inhibited the pericentriolar accumulation of all markers that display EE-ERC-TGN interface in the inner preAC and prevented Golgi unlinking and dislocation to the outer preAC. Furthermore, in pulse-chase experiments, we demonstrated that the presence of dynasore only during the early phase of MCMV infection (4–14 hpi) is sufficient to prevent not only AC formation but also the synthesis of late-phase proteins and virion production. Therefore, our results indicate that dynamin-2 acts as a part of the machinery required for AC generation and rearrangement of EE/ERC/Golgi membranes in the early phase of CMV infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nadine Szumilas ◽  
Odilia B. J. Corneth ◽  
Christian H. K. Lehmann ◽  
Heike Schmitt ◽  
Svenia Cunz ◽  
...  

Siglec-H is a DAP12-associated receptor on plasmacytoid dendritic cells (pDCs) and microglia. Siglec-H inhibits TLR9-induced IFN-α production by pDCs. Previously, it was found that Siglec-H-deficient mice develop a lupus-like severe autoimmune disease after persistent murine cytomegalovirus (mCMV) infection. This was due to enhanced type I interferon responses, including IFN-α. Here we examined, whether other virus infections can also induce autoimmunity in Siglec-H-deficient mice. To this end we infected Siglec-H-deficient mice with influenza virus or with Lymphocytic Choriomeningitis virus (LCMV) clone 13. With both types of viruses we did not observe induction of autoimmune disease in Siglec-H-deficient mice. This can be explained by the fact that both types of viruses are ssRNA viruses that engage TLR7, rather than TLR9. Also, Influenza causes an acute infection that is rapidly cleared and the chronicity of LCMV clone 13 may not be sufficient and may rather suppress pDC functions. Siglec-H inhibited exclusively TLR-9 driven type I interferon responses, but did not affect type II or type III interferon production by pDCs. Siglec-H-deficient pDCs showed impaired Hck expression, which is a Src-family kinase expressed in myeloid cells, and downmodulation of the chemokine receptor CCR9, that has important functions for pDCs. Accordingly, Siglec-H-deficient pDCs showed impaired migration towards the CCR9 ligand CCL25. Furthermore, autoimmune-related genes such as Klk1 and DNase1l3 are downregulated in Siglec-H-deficient pDCs as well. From these findings we conclude that Siglec-H controls TLR-9-dependent, but not TLR-7 dependent inflammatory responses after virus infections and regulates chemokine responsiveness of pDCs.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Francisco Victorino ◽  
Tarin Bigley ◽  
Eugene Park ◽  
Cong-Hui Yao ◽  
Jeanne Benoit ◽  
...  

Natural killer (NK) cells are essential for early protection against virus infection, and must metabolically adapt to the energy demands of activation. Here, we found upregulation of the metabolic adaptor hypoxia inducible factor-1α (HIF-1α) is a feature of mouse NK cells during murine cytomegalovirus (MCMV) infection in vivo. HIF-1 α -deficient NK cells failed to control viral load, causing increased morbidity. No defects were found in effector functions of HIF-1α KO NK cells however, their numbers were significantly reduced. Loss of HIF-1 α did not affect NK cell proliferation during in vivo infection and in vitro cytokine stimulation. Instead, we found HIF-1α -deficient NK cells showed increased expression of the pro-apoptotic protein Bim and glucose metabolism was impaired during cytokine stimulation in vitro. Similarly, during MCMV infection HIF-1α -deficient NK cells upregulated Bim and had increased caspase activity. Thus, NK cells require HIF-1α-dependent metabolic functions to repress Bim expression and sustain cell numbers for an optimal virus response.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1078
Author(s):  
Fran Krstanović ◽  
William J. Britt ◽  
Stipan Jonjić ◽  
Ilija Brizić

Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that can cause severe disease in immunocompromised individuals and immunologically immature fetuses and newborns. Most infected newborns are able to resolve the infection without developing sequelae. However, in severe cases, congenital HCMV infection can result in life-threatening pathologies and permanent damage of organ systems that possess a low regenerative capacity. Despite the severity of the problem, HCMV infection of the central nervous system (CNS) remains inadequately characterized to date. Cytomegaloviruses (CMVs) show strict species specificity, limiting the use of HCMV in experimental animals. Infection following intraperitoneal administration of mouse cytomegalovirus (MCMV) into newborn mice efficiently recapitulates many aspects of congenital HCMV infection in CNS. Upon entering the CNS, CMV targets all resident brain cells, consequently leading to the development of widespread histopathology and inflammation. Effector functions from both resident cells and infiltrating immune cells efficiently resolve acute MCMV infection in the CNS. However, host-mediated inflammatory factors can also mediate the development of immunopathologies during CMV infection of the brain. Here, we provide an overview of the cytomegalovirus infection in the brain, local immune response to infection, and mechanisms leading to CNS sequelae.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 619
Author(s):  
Cassandra M. Bonavita ◽  
Rhonda D. Cardin

Human Cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection and is associated with the exacerbation of chronic inflammatory diseases in seropositive individuals. Of particular impact, HCMV infection is known to worsen many cardiovascular diseases including myocarditis, atherosclerosis, hypertension, and transplant vasculopathy. Due to its similarity to HCMV, murine CMV (MCMV) is an appropriate model to understand HCMV-induced pathogenesis in the heart and vasculature. MCMV shares similar sequence homology and recapitulates much of the HCMV pathogenesis, including HCMV-induced cardiovascular diseases. This review provides insight into HCMV-associated cardiovascular diseases and the murine model of MCMV infection, which has been used to study the viral pathogenesis and mechanisms contributing to cardiovascular diseases. Our new functional studies using echocardiography demonstrate tachycardia and hypertrophy in the mouse, similar to HCMV-induced myocarditis in humans. For the first time, we show long term heart dysfunction and that MCMV reactivates from latency in the heart, which raises the intriguing idea that HCMV latency and frequent virus reactivation perturbs long term cardiovascular function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abrar Ul Haq Khan ◽  
Saeedah Musaed Almutairi ◽  
Alaa Kassim Ali ◽  
Rosalba Salcedo ◽  
C. Andrew Stewart ◽  
...  

Natural killer (NK) cells are the predominant innate lymphocytes that provide early defense against infections. In the inflammatory milieu, NK cells modify their metabolism to support high energy demands required for their proliferation, activation, and functional plasticity. This metabolic reprogramming is usually accompanied by the upregulation of nutrient transporter expression on the cell surface, leading to increased nutrient uptake required for intense proliferation. The interleukin-1 family members of inflammatory cytokines are critical in activating NK cells during infection; however, their underlying mechanism in NK cell metabolism is not fully elucidated. Previously, we have shown that IL-18 upregulates the expression of solute carrier transmembrane proteins and thereby induces a robust metabolic boost in NK cells. Unexpectedly, we found that IL-18 signaling is dispensable during viral infection in vivo, while the upregulation of nutrient transporters is primarily MyD88-dependent. NK cells from Myd88-/- mice displayed significantly reduced surface expression of nutrient receptors and mTOR activity during MCMV infection. We also identified that IL-33, another cytokine employing MyD88 signaling, induces the expression of nutrient transporters but requires a pre-exposure to IL-12. Moreover, signaling through the NK cell activating receptor, Ly49H, can also promote the expression of nutrient transporters. Collectively, our findings revealed multiple pathways that can induce the expression of nutrient transporters on NK cells while highlighting the imperative role of MyD88 in NK cell metabolism during infection.


Sign in / Sign up

Export Citation Format

Share Document