low passage
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 69)

H-INDEX

43
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Aileen Ebenig ◽  
Samada Muraleedharan ◽  
Julia Kazmierski ◽  
Daniel Todt ◽  
Arne Auste ◽  
...  

Since December 2019, the novel human coronavirus SARS-CoV-2 has spread globally, causing millions of deaths. Unprecedented efforts have enabled development and authorization of a range of vaccines, which reduce transmission rates and confer protection against the associated disease COVID-19. These vaccines are conceptually diverse, including e.g. classical adjuvanted whole-inactivated virus, viral vectors, and mRNA vaccines. We have analysed two prototypic model vaccines, the strongly TH1-biased measles vaccine-derived candidate MeVvac2-SARS2-S(H) and a TH2-biased Alum-adjuvanted, non-stabilized Spike (S) protein side-by-side, for their ability to protect Syrian hamsters upon challenge with a low-passage SARS-CoV-2 patient isolate. As expected, the MeVvac2-SARS2-S(H) vaccine protected the hamsters safely from severe disease. In contrast, the protein vaccine induced vaccine-associated enhanced respiratory disease (VAERD) with massive infiltration of eosinophils into the lungs. Global RNA-Seq analysis of hamster lungs revealed reduced viral RNA and less host dysregulation in MeVvac2-SARS2-S(H) vaccinated animals, while S protein vaccination triggered enhanced host gene dysregulation compared to unvaccinated control animals. Of note, mRNAs encoding the major eosinophil attractant CCL-11, the TH2 response-driving cytokine IL-19, as well as TH2-cytokines IL-4, IL-5, and IL-13 were exclusively up-regulated in the lungs of S protein vaccinated animals, consistent with previously described VAERD induced by RSV vaccine candidates. IL-4, IL-5, and IL-13 were also up-regulated in S-specific splenocytes after protein vaccination. Using scRNA-Seq, T cells and innate lymphoid cells were identified as the source of these cytokines, while Ccl11 and Il19 mRNAs were expressed in lung macrophages displaying an activated phenotype. Interestingly, the amount of viral reads in this macrophage population correlated with the abundance of Fc-receptor reads. These findings suggest that VAERD is triggered by induction of TH2-type helper cells secreting IL-4, IL-5, and IL-13, together with stimulation of macrophage subsets dependent on non-neutralizing antibodies. Via this mechanism, uncontrolled eosinophil recruitment to the infected tissue occurs, a hallmark of VAERD immunopathogenesis. These effects could effectively be treated using dexamethasone and were not observed in animals vaccinated with MeVvac2-SARS2-S(H). Taken together, our data validate the potential of TH2-biased COVID-19 vaccines and identify the transcriptional mediators that underlie VAERD, but confirm safety of TH1-biased vaccine concepts such as vector-based or mRNA vaccines. Dexamethasone, which is already in use for treatment of severe COVID-19, may alleviate such VAERD, but in-depth scrutiny of any next-generation protein-based vaccine candidates is required, prior and after their regulatory approval.


2021 ◽  
Vol 5 ◽  
pp. 76
Author(s):  
Shahn P.R. Bisschop ◽  
Andrew Peters ◽  
Gil Domingue ◽  
Michael C. Pearce ◽  
Jeanette Verwey ◽  
...  

Background This study determined whether the naturally attenuated, thermotolerant Newcastle disease vaccine virus I-2 could acquire virulence after five in vivo passages through SPF chickens. Methods Study design was to international requirements including European Pharmacopoeia, Ph. Eur., v9.0 04/2013:0450, 2013. I-2 Working Seed (WS) was compared with five-times-passaged I-2 WS (5XP WS) in intracerebral pathogenicity index (ICPI), Fo cleavage site sequencing and Safety tests. Results The first passage series used a 50% brain: 50% tracheal tissue challenge homogenate and was unsuccessful as I-2 was not detected after the fourth passage. A second passage series used 10% brain: 90% tracheal tissue homogenates. I-2 was isolated from tracheal tissue in each passage. However harvested titres were below the minimum challenge level (107 EID50) specified for the ICPI and Safety tests, possibly reflecting I-2’s inherently low pathogenicity (interestingly caecal tonsils yielded significant titres). Given this the WS and 5XP WS comparisons proceeded. ICPI values were 0.104 and 0.073 for the WS group and the 5XP WS group respectively confirming that I-2, whether passaged or not, expressed low pathogenicity. F0 amino-acid sequences for both WS and 5XP WS were identified as 112R-K-Q-G-R-↓-L-I-G119 and so compatible with those of avirulent ND viruses. In safety, no abnormal clinical signs were observed in both groups except for two chicks in the 5XP WS group, where one bird was withdrawn due to a vent prolapse, and another bird died with inconclusive necropsy results. Conclusions: These data, the issue of low passage titres with little or no virus isolation from brain tissues and the genomic copy approach suggest a need to amend Ph. Eur. v9.0 04/2013:0450, 2013 for naturally attenuated, low pathogenicity vaccine viruses such as I-2. From an international regulatory perspective, the study provides further definitive data demonstrating that Newcastle disease vaccine virus I-2 is safe for use.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2183
Author(s):  
Sanjana Ghosh ◽  
Jonathan F. Lovell

Chemophototherapy is an emerging tumor ablation modality that can improve local delivery of chemotherapeutic agents. Long circulating doxorubicin (Dox) in porphyrin-phospholipid (PoP) liposomes (LC-Dox-PoP) has previously been developed as an effective chemophototherapy agent. In the present study, we observed that in mice, LC-Dox-PoP showed enhanced accumulation in human pancreatic tumor xenografts even with suboptimal light doses, as assessed by fluorometric analysis of tissue homogenates and microscopic imaging of Dox and PoP in tumor slices. A second laser treatment, at a time point in which tumors had greater drug accumulation as a result of the first laser treatment, induced potent tumor ablation. Efficacy studies were carried out in two human pancreatic cancer subcutaneous mouse tumor models; MIA PaCa-2 or low-passage patient derived pancreatic cancer xenografts. A single treatment of 3 mg/kg LC-Dox-PoP and an initial 150 J/cm2 laser treatment 1 h after drug administration, followed by second laser treatment of 50 J/cm2 8 h after drug administration, was more effective than a single laser treatment of 200 J/cm2 at either of those time points. Thus, this study presents proof-of-principle and rationale for using two discrete laser treatments to enhance the efficacy of chemophototherapy.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5882
Author(s):  
Stephanie Matschos ◽  
Florian Bürtin ◽  
Said Kdimati ◽  
Mandy Radefeldt ◽  
Susann Krake ◽  
...  

Based on our research group’s large biobank of colorectal cancers (CRC), we here describe the ongoing activity of establishing a high quality assured PDX biobank for more than 100 individual CRC cases. This includes sufficient numbers of vitally frozen (n > 30 aliquots) and snap frozen (n > 5) backups, “ready to use”. Additionally, PDX tumor pieces were paraffin embedded. At the current time, we have completed 125 cases. This resource allows histopathological examinations, molecular characterizations, and gene expression analysis. Due to its size, different issues of interest can be addressed. Most importantly, the application of low-passage, cryopreserved, and well-characterized PDX for in vivo studies guarantees the reliability of results due to the largely preserved tumor microenvironment. All cases described were molecularly subtyped and genetic identity, in comparison to the original tumor tissue, was confirmed by fingerprint analysis. The latter excludes ambiguity errors between the PDX and the original patient tumor. A cancer hot spot mutation analysis was performed for n = 113 of the 125 cases entities. All relevant CRC molecular subtypes identified so far are represented in the Hansestadt Rostock CRC (HROC)-Xenobank. Notably, all models are available for cooperative research approaches.


2021 ◽  
Vol 5 ◽  
pp. 76
Author(s):  
Shahn P.R. Bisschop ◽  
Andrew Peters ◽  
Gil Domingue ◽  
Michael C. Pearce ◽  
Jeanette Verwey ◽  
...  

Background This study determined whether the naturally attenuated, thermotolerant Newcastle disease vaccine virus I-2 could acquire virulence after five in vivo passages through SPF chickens. Methods Study design was to international requirements including European Pharmacopoeia, Ph. Eur., v9.0 04/2013:0450, 2013. I-2 Working Seed (WS) was compared with five-times-passaged I-2 WS (5XP WS) in intracerebral pathogenicity index (ICPI), Fo cleavage site sequencing and Safety tests. Results The first passage series used a 50% brain: 50% tracheal tissue challenge homogenate and was unsuccessful as I-2 was not detected after the fourth passage. A second passage series used 10% brain: 90% tracheal tissue homogenates. I-2 was isolated from tracheal tissue in each passage. However harvested titres were below the minimum challenge level (107 EID50) specified for the ICPI and Safety tests, possibly reflecting I-2’s inherently low pathogenicity (interestingly caecal tonsils yielded significant titres). Given this the WS and 5XP WS comparisons proceeded. ICPI values were 0.104 and 0.073 for the WS group and the 5XP WS group respectively confirming that I-2, whether passaged or not, expressed low pathogenicity. F0 amino-acid sequences for both WS and 5XP WS were identified as 112R-K-Q-G-R-↓-L-I-G119 and so compatible with those of avirulent ND viruses. In safety, no abnormal clinical signs were observed in both groups except for two chicks in the 5XP WS group, where one bird was withdrawn due to a vent prolapse, and another bird died with inconclusive necropsy results. Conclusions: These data, the issue of low passage titres with little or no virus isolation from brain tissues and the genomic copy approach suggest a need to amend Ph. Eur. v9.0 04/2013:0450, 2013 for naturally attenuated, low pathogenicity vaccine viruses such as I-2. From an international regulatory perspective, the study provides further definitive data demonstrating that Newcastle disease vaccine virus I-2 is safe for use.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2232
Author(s):  
Caroline J. Stephenson ◽  
Heather Coatsworth ◽  
Christy M. Waits ◽  
Nicole M. Nazario-Maldonado ◽  
Derrick K. Mathias ◽  
...  

Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.


2021 ◽  
Author(s):  
Prabhjot S. Mundi ◽  
Filemon S. Dela Cruz ◽  
Adina Grunn ◽  
Daniel Diolaiti ◽  
Audrey Mauguen ◽  
...  

Predicting tumor sensitivity to antineoplastics remains an elusive challenge, with no methods demonstrating predictive power. Joint analysis of tumors-from patients with distinct malignancies who had progressed on multiple lines of therapy-and drug perturbation transcriptional profiles predicted sensitivity to 28 of 350 drugs, 26 of which (93%) were confirmed in low-passage, patient-derived xenograft (PDX) models. Drugs were prioritized based on their ability to either invert the activity of individual Master Regulator proteins, with available high-affinity inhibitors, or of the modules they comprise (Tumor-Checkpoints), based on de novo mechanism of action analysis. Of 138 PDX mice enrolled in 16 single and 18 multi-protein treatment arms, a disease control rate (DCR) of 68% and 91%, and an objective response rate (ORR) of 12% and 17%, were achieved respectively, compared to 6% and 0% in the negative controls arm, with multi-protein drugs achieving significantly more durable responses. Thus, these approaches may effectively complement and expand current precision oncology approaches, as also illustrated by a case study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anca Nastase ◽  
Amit Mandal ◽  
Shir Kiong Lu ◽  
Hima Anbunathan ◽  
Deborah Morris-Rosendahl ◽  
...  

AbstractPleural mesothelioma is an aggressive malignancy with limited effective therapies. In order to identify therapeutic targets, we integrated SNP genotyping, sequencing and transcriptomics from tumours and low-passage patient-derived cells. Previously unrecognised deletions of SUFU locus (10q24.32), observed in 21% of 118 tumours, resulted in disordered expression of transcripts from Hedgehog pathways and the T-cell synapse including VISTA. Co-deletion of Interferon Type I genes and CDKN2A was present in half of tumours and was a predictor of poor survival. We also found previously unrecognised deletions in RB1 in 26% of cases and show sub-micromolar responses to downstream PLK1, CHEK1 and Aurora Kinase inhibitors in primary mesothelioma cells. Defects in Hippo pathways that included RASSF7 amplification and NF2 or LATS1/2 mutations were present in 50% of tumours and were accompanied by micromolar responses to the YAP1 inhibitor Verteporfin. Our results suggest new therapeutic avenues in mesothelioma and indicate targets and biomarkers for immunotherapy.


2021 ◽  
Vol 22 (14) ◽  
pp. 7255
Author(s):  
Federica Papaccio ◽  
Daniela Kovacs ◽  
Barbara Bellei ◽  
Silvia Caputo ◽  
Emilia Migliano ◽  
...  

Solid tumors are complex systems characterized by dynamic interactions between neoplastic cells, non-tumoral cells, and extracellular components. Among all the stromal cells that populate tumor microenvironment, fibroblasts are the most abundant elements and are critically involved in disease progression. Cancer-associated fibroblasts (CAFs) have pleiotropic functions in tumor growth and extracellular matrix remodeling implicated in local invasion and distant metastasis. CAFs additionally participate in the inflammatory response of the tumor site by releasing a variety of chemokines and cytokines. It is becoming clear that understanding the dynamic, mutual melanoma–fibroblast relationship would enable treatment options to be amplified. To better characterize melanoma-associated fibroblasts, here we analyzed low-passage primary CAFs derived from advanced-stage primary skin melanomas, focusing on the immuno-phenotype. Furthermore, we assessed the expression of several CAF markers and the production of growth factors. To deepen the study of CAF–melanoma cell crosstalk, we employed CAF-derived supernatants and trans-well co-culture systems to evaluate the influences of CAFs on (i) the motogenic ability of melanoma cells, (ii) the chemotherapy-induced cytotoxicity, and (iii) the release of mediators active in modulating tumor growth and spread.


Sign in / Sign up

Export Citation Format

Share Document