scholarly journals Faculty Opinions recommendation of A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW.

Author(s):  
William Margolin
2021 ◽  
Author(s):  
Zhixin Lyu ◽  
Atsushi Yahashiri ◽  
Xinxing Yang ◽  
Joshua W McCausland ◽  
Gabriela M Kaus ◽  
...  

The FtsN protein of Escherichia coli and other proteobacteria is an essential and highly conserved bitopic membrane protein that triggers the inward synthesis of septal peptidoglycan (sPG) during cell division. Previous work has shown that the activation of sPG synthesis by FtsN involves a series of interactions of FtsN with other divisome proteins and the cell wall. Precisely how FtsN achieves this role is unclear, but a recent study has shown that FtsN promotes the relocation of the essential sPG synthase FtsWI from an FtsZ-associated track (where FtsWI is inactive) to an sPG-track (where FtsWI engages in sPG synthesis). Whether FtsN works by displacing FtsWI from the Z-track or capturing/retaining FtsWI on the sPG-track is not known. Here we use single-molecule imaging and genetic manipulation to investigate the organization and dynamics of FtsN at the septum and how they are coupled to sPG synthesis activity. We found that FtsN exhibits a spatial organization and dynamics distinct from those of the FtsZ-ring. Single FtsN molecules move processively as a single population with a speed of ~ 9 nm s-1, similar to the speed of active FtsWI molecules on the sPG-track, but significantly different from the ~ 30 nm s-1 speed of inactive FtsWI molecules on the FtsZ-track. Furthermore, the processive movement of FtsN is independent of FtsZ's treadmilling dynamics but driven exclusively by active sPG synthesis. Importantly, only the essential domain of FtsN, a three-helix bundle in the periplasm, is required to maintain the processive complex containing both FtsWI and FtsN on the sPG-track. We conclude that FtsN activates sPG synthesis by forming a processive synthesis complex with FtsWI exclusively on the sPG-track. These findings favor a model in which FtsN captures or retains FtsWI on the sPG-track rather than one in which FtsN actively displaces FtsWI from the Z-track.


2020 ◽  
Author(s):  
Nikolas Hundt

Abstract Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.


2019 ◽  
Author(s):  
Adam Eördögh ◽  
Carolina Paganini ◽  
Dorothea Pinotsi ◽  
Paolo Arosio ◽  
Pablo Rivera-Fuentes

<div>Photoactivatable dyes enable single-molecule imaging in biology. Despite progress in the development of new fluorophores and labeling strategies, many cellular compartments remain difficult to image beyond the limit of diffraction in living cells. For example, lipid droplets, which are organelles that contain mostly neutral lipids, have eluded single-molecule imaging. To visualize these challenging subcellular targets, it is necessary to develop new fluorescent molecular devices beyond simple on/off switches. Here, we report a fluorogenic molecular logic gate that can be used to image single molecules associated with lipid droplets with excellent specificity. This probe requires the subsequent action of light, a lipophilic environment and a competent nucleophile to produce a fluorescent product. The combination of these requirements results in a probe that can be used to image the boundary of lipid droplets in three dimensions with resolutions beyond the limit of diffraction. Moreover, this probe enables single-molecule tracking of lipids within and between droplets in living cells.</div>


Sign in / Sign up

Export Citation Format

Share Document