Impact of the lower energy threshold on the NEMA NU2-2001 count-rate performance of a LSO based PET-CT scanner

2008 ◽  
Vol 47 (05) ◽  
pp. 210-214 ◽  
Author(s):  
H. Herzog ◽  
K. P. Schäfers ◽  
S. Käpplinger ◽  
O. Schober ◽  
J. Eckardt

SummaryThe aim of this study was to investigate the impact of the lower energy threshold (LET) on the NEMA NU2–2001 count-rate performance of a LSO-based PET scanner (Siemens PET-CT Biograph Sensation 16). The quantitative measurements were focused on three different aspects: noise equivalent count rate (NEC), scatter fraction, and absolute sensitivity. Methods: According to the NEMA-NU2–2001 protocol count-rate-performance (NEC-2R, scatter fraction) and sensitivity were evaluated performing serial measurements at LETs of 350, 375, 400, 410, 420, 430, 440, and 450 keV (the upper energy threshold was fixed to 650 keV). NEMA protocols were adapted to account for the intrinsic radioactivity of 176Lu in the LSO crystals. Results: Up to a radioactivity concentration of 8 kBq/ml the highest NECrates were obtained at an LET of 410 keV, between 8 and 20 kBq/ml at an LET of 420 keV and above 20 kBq/ml at an LET of 430 keV. The overall NEC maximum was 67 kcps at 430 keV (at 28 kBq/ml). The minimum scatter fraction was measured at a radioactivity concentration of ~ 0.5 kBq/ml. The scatter fraction decreased continuously from 45% at an energy threshold of 350 keV to 24% at 450 keV. The maximum sensitivity of 5.8 kcps/MBq, was obtained at an LET of 350 keV and the minimum sensitivity of 4.2 kcps/MBq at an LET of 450 keV. At the LET with the maximum NEC-rate (430 keV) the sensitivity was 4.8 kcps/MBq. Conclusion: The optimal count-rate performance of the LSO-based PET system was found at LETs between 410 keV and 430 keV depending on the actual radioactivity concentration placed in the scanner. A global maximum in NEC count rate was obtained at an LET of 430 keV.

2009 ◽  
Vol 56 (6) ◽  
pp. 3840-3843 ◽  
Author(s):  
Michael Rissi ◽  
Nepomuk Otte ◽  
Thomas Schweizer ◽  
Maxim Shayduk

2006 ◽  
Vol 45 (03) ◽  
pp. 126-133 ◽  
Author(s):  
Y. Bercier ◽  
M. Schwaiger ◽  
S. I. Ziegler ◽  
M.-J. Martínez

SummaryAim: The new PET/CT Biograph Sensation 16 (BS16) tomographs have faster detector electronics which allow a reduced timing coincidence window and an increased lower energy threshold (from 350 to 400 keV). This paper evaluates the performance of the BS16 PET scanner before and after the Pico-3D electronics upgrade. Methods: Four NEMA NU 2–2001 protocols, (i) spatial resolution, (ii) scatter fraction, count losses and random measurement, (iii) sensitivity, and (iv) image quality, have been performed. Results: A considerable change in both PET count-rate performance and image quality is observed after electronics upgrade. The new scatter fraction obtained using Pico-3D electronics showed a 14% decrease compared to that obtained with the previous electronics. At the typical patient background activity (5.3 kBq/ml), the new scatter fraction was approximately 0.42. The noise equivalent count-rate (RNEC) performance was also improved. The value at which the RNEC curve peaked, increased from 3.7·104s-1 at 14 kBq/ml to 6.4·104s-1 at 21 kBq/ml (2R-NEC rate). Likewise, the peak true count-rate value increased from 1.9·105s-1 at 22 kBq/ml to 3.4·105s-1 at 33 kBq/ml. An average increase of 45% in contrast was observed for hot spheres when using AW-OSEM (4ix8s) as the reconstruction algorithm. For cold spheres, the average increase was 12%. Conclusion: The performance of the PET scanners in the BS16 tomographs is improved by the optimization of the signal processing. The narrower energy and timing coincidence windows lead to a considerable increase of signal- to-noise ratio. The existing combination of fast detectors and adapted electronics in the BS16 tomographs allow imaging protocols with reduced acquisition time, providing higher patient throughput.


2008 ◽  
Vol 53 (14) ◽  
pp. 3723-3738 ◽  
Author(s):  
L R MacDonald ◽  
R E Schmitz ◽  
A M Alessio ◽  
S D Wollenweber ◽  
C W Stearns ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document