scholarly journals Biosphere 2’s Lessons about Living on Earth and in Space

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mark Nelson

Biosphere 2, the largest and most biodiverse closed ecological system facility yet created, has contributed vital lessons for living with our planetary biosphere and for long-term habitation in space. From the space life support perspective, Biosphere 2 contrasted with previous BLSS work by including areas based on Earth wilderness biomes in addition to its provision for human life support and by using a soil-based intensive agricultural system producing a complete human diet. No previous BLSS system had included domestic farm animals. All human and domestic animal wastes were also recycled and returned to the crop soils. Biosphere 2 was important as a first step towards learning how to miniaturize natural ecosystems and develop technological support systems compatible with life. Biosphere 2’s mostly successful operation for three years (1991-1994) changed thinking among space life support scientists and the public at large about the need for minibiospheres for long-term habitation in space. As an Earth systems laboratory, Biosphere 2 was one of the first attempts to make ecology an experimental science at a scale relevant to planetary issues such as climate change, regenerative agriculture, nutrient and water recycling, loss of biodiversity, and understanding of the roles wilderness biomes play in the Earth’s biosphere. Biosphere 2 aroused controversy because of narrow definitions and expectations of how science is to be conducted. The cooperation between engineers and ecologists and the requirement to design a technosphere that supported the life inside without harming it have enormous relevance to what is required in our global home. Applications of bioregenerative life support systems for near-term space applications such as initial Moon and/or Mars bases, will be severely limited by high costs of transport to space and so will rely on lighter weight, hydroponic systems of growing plants which will focus first on water and air regeneration and gradually increase its production of food required by astronauts or inhabitants. The conversion of these systems to more robust and sustainable systems will require advanced technologies, e.g., to capture sunlight for plant growth or process usable materials from the lunar or Martian atmosphere and regolith, leading to greater utilization of in situ space resources and less on transport from Earth. There are many approaches to the accomplishment of space life support. Significant progress has been made especially by two research efforts in China and the MELiSSA project of the European Space Agency. These approaches use cybernetic controls and the integration of intensive modules to accomplish food production, waste treatment and recycling, atmospheric regeneration, and in some systems, high-protein production from insects and larvae. Biosphere 2 employed a mix of ecological self-organization and human intervention to protect biodiversity for wilderness biomes with a tighter management of food crops in its agriculture. Biosphere 2’s aims were different than bioregenerative life support systems (BLSS) which have focused exclusively on human life support. Much more needs to be learned from both smaller, efficient ground-based BLSS for nearer-term habitation and from minibiospheric systems for long-term space application to transform humanity and Earth-life into truly multiplanet species.

2009 ◽  
Vol 4 (4) ◽  
pp. 241-252 ◽  
Author(s):  
Veronica De Micco ◽  
Giovanna Aronne ◽  
Giuseppe Colla ◽  
Raimondo Fortezza ◽  
Stefania De Pascale

Author(s):  
Boris F. ZARETSKIY ◽  
Arkadiy S. GUZENBERG ◽  
Igor A. SHANGIN

Life support for first manned spaceflights was based on supplies of consumables. Crew life support systems based on supplies of water and oxygen, in spite of their simplicity, are extremely inefficient in orbital space missions and are unfeasible in deep space missions because of mass and volume constraints. Therefore, there are currently developed and are to be used on space stations the life support systems that are based on chemical and physical regeneration of water and oxygen extracted from human waste. In view of further advances in long-duration orbital stations, and the prospects of establishment of planetary outposts and deep space exploration, the problem of constructing an automated system for controlling a suite of regenerative LSS becomes urgent. The complexity of solving the problem of constructing an efficient control system in this case owes to the existence of a large number of effectiveness criteria. The paper proposes a system of consolidated global efficiency criteria, which allows to break up this problem into a series of sub-problems of optimization in order to solve this problem. The proposed criteria are longevity, cost, comfort. The paper presents a series of specific examples of using the proposed principles with necessary generalizations. Key words: space life support systems, atmosphere revitalization equipment, automated control system, global generalized efficiency criteria, longevity, cost, comfort.


2019 ◽  
Vol 94 (10) ◽  
pp. 3039-3048 ◽  
Author(s):  
Limin Yang ◽  
Huankai Li ◽  
Tonggui Liu ◽  
Yuqing Zhong ◽  
Chengcheng Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document