bioregenerative life support
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 26)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Morgan A. Irons ◽  
Lee G. Irons

In this perspective paper, we raise attention to the lack of methods or data to measure claims of sustainability for bioregenerative life support system designs and propose a method for quantifying sustainability. Even though sustainability is used as a critical mission criterion for deep space exploration, there result is a lack of coherence in the literature with the use of the word sustainability and the application of the criterion. We review a Generalized Resilient Design Framework for quantifying the engineered resilience of any environmental control and life support system and explain how it carries assumptions that do not fit the assumptions of sustainability that come out of environmental science. We explain bioregenerative life support system sustainability in the context of seven theoretical frameworks: a planet with soil, biogeochemical cycles, and ecosystem services provided to humans; human consumption of natural resources as loads and disturbances; supply chains as extensions of natural resources engineering application of; forced and natural cycles; bioregenerative systems as fragmented ecosystems; ecosystems as a network of consumer-resource interactions with critical factors occurring at ecosystem control points; and stability of human consumer resources. We then explain the properties of environmental stability and propose a method of quantifying resistance and resilience that are impacted by disturbances, extend this method to quantifying consistence and persistence that are impacted by feedback from loads. Finally, we propose a Terraform Sustainability Assessment Framework for normalizing the quantified sustainability properties of a bioregenerative life support system using the Earth model to control for variance.


Author(s):  
Andrew C. Schuerger

Human missions to the Moon and Mars will necessarily increase in both duration and complexity over the coming decades. In the past, short-term missions to low-Earth orbit (LEO) or the Moon (e.g., Apollo) utilized physiochemical life support systems for the crews. However, as the spatial and temporal durations of crewed missions to other planetary bodies increase, physiochemical life support systems become burdened with the requirement of frequent resupply missions. Bioregenerative life support systems (BLSS) have been proposed to replace much of the resupply required of physiochemical systems with modules that can regenerate water, oxygen, and food stocks with plant-based biological production systems. In order to protect the stability and productivity of BLSS modules (i.e., small scale units) or habitats (i.e., large scale systems), an integrated pest management (IPM) program is required to prevent, mitigate, and eliminate both insect pests and disease outbreaks in space-based plant-growing systems. A first-order BLSS IPM program is outlined herein that summarizes a collection of protocols that are similar to those used in field, greenhouse, and vertical-farming agricultural systems. However, the space environment offers numerous unusual stresses to plants, and thus, unique space-based IPM protocols will have to be developed. In general, successful operation of space-based BLSS units will be guided by IPM protocols that (1) should be established early in the mission design phase to be effective, (2) will be dynamic in nature changing both spatially and temporally depending on the successional processes afoot within the crewed spacecraft, plant-growing systems, and through time; and (3) can prevent insect/phytopathology outbreaks at very high levels that can approach 100% if properly implemented.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leena M. Cycil ◽  
Elisabeth M. Hausrath ◽  
Douglas W. Ming ◽  
Christopher T. Adcock ◽  
James Raymond ◽  
...  

With long-term missions to Mars and beyond that would not allow resupply, a self-sustaining Bioregenerative Life Support System (BLSS) is essential. Algae are promising candidates for BLSS due to their completely edible biomass, fast growth rates and ease of handling. Extremophilic algae such as snow algae and halophilic algae may also be especially suited for a BLSS because of their ability to grow under extreme conditions. However, as indicated from over 50 prior space studies examining algal growth, little is known about the growth of algae at close to Mars-relevant pressures. Here, we explored the potential for five algae species to produce oxygen and food under low-pressure conditions relevant to Mars. These included Chloromonas brevispina, Kremastochrysopsis austriaca, Dunaliella salina, Chlorella vulgaris, and Spirulina plantensis. The cultures were grown in duplicate in a low-pressure growth chamber at 670 ± 20 mbar, 330 ± 20 mbar, 160 ± 20 mbar, and 80 ± 2.5 mbar pressures under continuous light exposure (62–70 μmol m–2 s–1). The atmosphere was evacuated and purged with CO2 after sampling each week. Growth experiments showed that D. salina, C. brevispina, and C. vulgaris were the best candidates to be used for BLSS at low pressure. The highest carrying capacities for each species under low pressure conditions were achieved by D. salina at 160 mbar (30.0 ± 4.6 × 105 cells/ml), followed by C. brevispina at 330 mbar (19.8 ± 0.9 × 105 cells/ml) and C. vulgaris at 160 mbar (13.0 ± 1.5 × 105 cells/ml). C. brevispina, D. salina, and C. vulgaris all also displayed substantial growth at the lowest tested pressure of 80 mbar reaching concentrations of 43.4 ± 2.5 × 104, 15.8 ± 1.3 × 104, and 57.1 ± 4.5 × 104 cells per ml, respectively. These results indicate that these species are promising candidates for the development of a Mars-based BLSS using low pressure (∼200–300 mbar) greenhouses and inflatable structures that have already been conceptualized and designed.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2272
Author(s):  
Veronica De Micco ◽  
Sara De Francesco ◽  
Chiara Amitrano ◽  
Carmen Arena

The realization of manned missions for space exploration requires the development of Bioregenerative Life Support Systems (BLSSs) to make human colonies self-sufficient in terms of resources. Indeed, in these systems, plants contribute to resource regeneration and food production. However, the cultivation of plants in space is influenced by ionizing radiation which can have positive, null, or negative effects on plant growth depending on intrinsic and environmental/cultivation factors. The aim of this study was to analyze the effect of high-LET (Linear Energy Transfer) ionizing radiation on seed germination and seedling development in eye bean. Dry seeds of Dolichos melanophthalmus DC. (eye bean) were irradiated with two doses (1 and 10 Gy) of C- and Ti-ions. Seedlings from irradiated seeds were compared with non-irradiated controls in terms of morpho-anatomical and biochemical traits. Results showed that the responses of eye bean plants to radiation are dose-specific and dependent on the type of ion. The information obtained from this study will be useful for evaluating the radio-resistance of eye bean seedlings, for their possible cultivation and utilization as food supplement in space environments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tom Verbeelen ◽  
Natalie Leys ◽  
Ramon Ganigué ◽  
Felice Mastroleo

To enable long-distance space travel, the development of a highly efficient and robust system to recover nutrients from waste streams is imperative. The inability of the current physicochemical-based environmental control and life support system (ECLSS) on the ISS to produce food in situ and to recover water and oxygen at high enough efficiencies results in the need for frequent resupply missions from Earth. Therefore, alternative strategies like biologically-based technologies called bioregenerative life support systems (BLSSs) are in development. These systems aim to combine biological and physicochemical processes, which enable in situ water, oxygen, and food production (through the highly efficient recovery of minerals from waste streams). Hence, minimalizing the need for external consumables. One of the BLSS initiatives is the European Space Agency’s (ESA) Micro-Ecological Life Support System Alternative (MELiSSA). It has been designed as a five-compartment bioengineered system able to produce fresh food and oxygen and to recycle water. As such, it could sustain the needs of a human crew for long-term space exploration missions. A prerequisite for the self-sufficient nature of MELiSSA is the highly efficient recovery of valuable minerals from waste streams. The produced nutrients can be used as a fertilizer for food production. In this review, we discuss the need to shift from the ECLSS to a BLSS, provide a summary of past and current BLSS programs and their unique approaches to nitrogen recovery and processing of urine waste streams. In addition, compartment III of the MELiSSA loop, which is responsible for nitrogen recovery, is reviewed in-depth. Finally, past, current, and future related ground and space demonstration and the space-related challenges for this technology are considered.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matthew J. McNulty ◽  
Aaron J. Berliner ◽  
Patrick G. Negulescu ◽  
Liber McKee ◽  
Olivia Hart ◽  
...  

There are medical treatment vulnerabilities in longer-duration space missions present in the current International Space Station crew health care system with risks, arising from spaceflight-accelerated pharmaceutical degradation and resupply lag times. Bioregenerative life support systems may be a way to close this risk gap by leveraging in situ resource utilization (ISRU) to perform pharmaceutical synthesis and purification. Recent literature has begun to consider biological ISRU using microbes and plants as the basis for pharmaceutical life support technologies. However, there has not yet been a rigorous analysis of the processing and quality systems required to implement biologically produced pharmaceuticals for human medical treatment. In this work, we use the equivalent system mass (ESM) metric to evaluate pharmaceutical purification processing strategies for longer-duration space exploration missions. Monoclonal antibodies, representing a diverse therapeutic platform capable of treating multiple space-relevant disease states, were selected as the target products for this analysis. We investigate the ESM resource costs (mass, volume, power, cooling, and crew time) of an affinity-based capture step for monoclonal antibody purification as a test case within a manned Mars mission architecture. We compare six technologies (three biotic capture methods and three abiotic capture methods), optimize scheduling to minimize ESM for each technology, and perform scenario analysis to consider a range of input stream compositions and pharmaceutical demand. We also compare the base case ESM to scenarios of alternative mission configuration, equipment models, and technology reusability. Throughout the analyses, we identify key areas for development of pharmaceutical life support technology and improvement of the ESM framework for assessment of bioregenerative life support technologies.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1896
Author(s):  
Leone Ermes Romano ◽  
Giovanna Aronne

To colonise other planets, self-sufficiency of space missions is mandatory. To date, the most promising technology to support long-duration missions is the bioregenerative life support system (BLSS), in which plants as autotrophs play a crucial role in recycling wastes and producing food and oxygen. We reviewed the scientific literature on duckweed (Lemnaceae) and reported available information on plant biological traits, nutritional features, biomass production, and space applications, especially of the genus Wolffia. Results confirmed that the smallest existing higher plants are the best candidate for space BLSS. We discussed needs for further research before criticalities to be addressed to finalise the adoption of Wolffia species for space missions.


Author(s):  
F. Javier Medina ◽  
Aránzazu Manzano ◽  
Alicia Villacampa ◽  
Malgorzata Ciska ◽  
Raúl Herranz

Plants are a necessary component of any system of bioregenerative life-support for human space exploration. For this purpose, plants must be capable of surviving and adapting to gravity levels different from the Earth gravity, namely microgravity, as it exists on board of spacecrafts orbiting the Earth, and partial-g, as it exists on the surface of the Moon or Mars. Gravity is a fundamental environmental factor for driving plant growth and development through gravitropism. Exposure to real or simulated microgravity produces a stress response in plants, which show cellular alterations and gene expression reprogramming. Partial-g studies have been performed in the ISS using centrifuges and in ground based facilities, by implementing adaptations in them. Seedlings and cell cultures were used in these studies. The Mars gravity level is capable of stimulating the gravitropic response of the roots and preserving the auxin polar transport. Furthermore, whereas Moon gravity produces alterations comparable, or even stronger than microgravity, the intensity of the alterations found at Mars gravity was milder. An adaptive response has been found in these experiments, showing upregulation of WRKY transcription factors involved in acclimation. This knowledge must be improved by incorporating plants to the coming projects of Moon exploration.


Sign in / Sign up

Export Citation Format

Share Document