canopy transpiration
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 25)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Abhilash K. Chandel ◽  
Lav R. Khot ◽  
David J. Brown ◽  
Claudio O. Stockle ◽  
R. Troy Peters ◽  
...  

2021 ◽  
Author(s):  
Alanna V Bodo ◽  
M. Altaf Arain

Abstract Background: Variable Retention Harvesting (VRH) is a silvicultural technique applied to enhance forest growth, and restore forest stands to closely resemble their natural compositions. This study used sapflow and understory eddy covariance flux measurements to examine the impacts of four different VRH treatments on the dominant components of evapotranspiration including canopy transpiration and water flux from understory vegetation and soil. These VRH treatments were applied to an 83-year-old red pine (Pinus resinosa) plantation forest in the Great Lakes region in Canada and included 55% aggregated crown retention (55A), 55% dispersed crown retention (55D), 33% aggregated crown retention (33A), 33% dispersed crown retention (33D) and unharvested control (CN) plot. Results: Study results showed a positive relationship between thinning intensity and the growth of understory vegetation, and hence enhanced evapotranspiration. The contribution to evapotranspiration from understory vegetation and soil was more pronounced in the dispersed thinning treatments, as compared to the aggregated. Overall, canopy transpiration contributed to 83% of total evapotranspiration in the un-thinned control plot and 55, 58, 30, and 23% for the 55A, 55D, 33A and 33D plots, respectively. The thinning or retention harvesting enhanced the water use efficiency in all treatments.Conclusion: Our results suggest VRH treatments that follow a dispersed harvesting pattern may provide the optimal balance between forest productivity and evapotranspiration or stand water use. Furthermore, a balance of contributions from both the canopy and successional understory vegetation and soil, as observed in the 55% retention harvesting treatment, may increase the resiliency of forest to climate change. These findings will help researchers, forest managers and decision-makers to improve their understanding of thinning impacts on water and carbon exchanges in forest ecosystems and adopt appropriate forest management practices to enhance their carbon sequestration capabilities, water use efficiency and resilience to climate change.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2720
Author(s):  
Songping Yu ◽  
Jianbin Guo ◽  
Zebin Liu ◽  
Yanhui Wang ◽  
Jing Ma ◽  
...  

In dryland regions, soil moisture is an important limiting factor for canopy transpiration (T). Thus, clarifying the impact of soil moisture on T is critical for comprehensive forest—water management and sustainable development. In this study, T, meteorological factors (reference evapotranspiration, ETref), soil moisture (relative soil water content, RSWC), and leaf area index (LAI) in a Larix principis-rupprechtii plantation of Liupan Mountains in the dryland region of Northwest China were simultaneously monitored during the growing seasons in 2017–2019. A modified Jarvis—Stewart model was established by introducing the impact of RSWC in different soil layers (0–20, 20–40, and 40–60 cm, respectively) to quantify the independent contribution of RSWC of different soil layers to T. Results showed that with rising ETref, T firstly increased and then decreased, and with rising RSWC and LAI, T firstly increased and then gradually stabilised, respectively. The modified Jarvis—Stewart model was able to give comparable estimates of T to those derived from sap flow measurements. The contribution of RSWC to T in different soil layers has obvious specificity, and the contribution rate of 20–40 cm (13.4%) and 0–20 cm soil layers (6.6%) where roots are mainly distributed is significantly higher than that of 40–60 cm soil layer (1.9%). As the soil moisture status changes from moist (RSWC0–60cm ≥ 0.4) to drought (RSWC0–60cm < 0.4), the role of the soil moisture in the 0–20 cm soil layer increased compared with other layers. The impacts of soil moisture that were coupled into the Jarvis—Stewart model can genuinely reflect the environmental influence and can be used to quantify the contributions of soil moisture to T. Thus, it has the potential to become a new tool to guide the protection and management of forest water resources.


2021 ◽  
Vol 18 (8) ◽  
pp. 2511-2525
Author(s):  
Gilvan Sampaio ◽  
Marília H. Shimizu ◽  
Carlos A. Guimarães-Júnior ◽  
Felipe Alexandre ◽  
Marcelo Guatura ◽  
...  

Abstract. The climate in the Amazon region is particularly sensitive to surface processes and properties such as heat fluxes and vegetation coverage. Rainfall is a key expression of the land surface–atmosphere interactions in the region due to its strong dependence on forest transpiration. While a large number of past studies have shown the impacts of large-scale deforestation on annual rainfall, studies on the isolated effects of elevated atmospheric CO2 concentrations (eCO2) on canopy transpiration and rainfall are scarcer. Here, for the first time, we systematically compare the plant physiological effects of eCO2 and deforestation on Amazon rainfall. We use the CPTEC Brazilian Atmospheric Model (BAM) with dynamic vegetation under a 1.5×CO2 experiment and a 100 % substitution of the forest by pasture grasslands, with all other conditions held similar between the two scenarios. We find that both scenarios result in equivalent average annual rainfall reductions (Physiology: −257 mm, −12 %; Deforestation: −183 mm, −9 %) that are above the observed Amazon rainfall interannual variability of 5 %. The rainfall decreases predicted in the two scenarios are linked to a reduction of approximately 20 % in canopy transpiration but for different reasons: the eCO2-driven reduction of stomatal conductance drives the change in the Physiology experiment, and the smaller leaf area index of pasturelands (−72 % compared to tropical forest) causes the result in the Deforestation experiment. The Walker circulation is modified in the two scenarios: in Physiology due to a humidity-enriched free troposphere with decreased deep convection due to the heightening of a drier and warmer (+2.1 ∘C) boundary layer, and in Deforestation due to enhanced convection over the Andes and a subsidence branch over the eastern Amazon without considerable changes in temperature (−0.2 ∘C in 2 m air temperature and +0.4 ∘C in surface temperature). But again, these changes occur through different mechanisms: strengthened west winds from the Pacific and reduced easterlies entering the basin affect the Physiology experiment, and strongly increased easterlies influence the result of the Deforestation experiment. Although our results for the Deforestation scenario agree with the results of previous observational and modelling studies, the lack of direct field-based ecosystem-level experimental evidence regarding the effect of eCO2 on moisture fluxes in tropical forests confers a considerable level of uncertainty to any projections of the physiological effect of eCO2 on Amazon rainfall. Furthermore, our results highlight the responsibilities of both Amazonian and non-Amazonian countries to mitigate potential future climatic change and its impacts in the region, driven either by local deforestation or global CO2 emissions.


2021 ◽  
Vol 204 ◽  
pp. 294-303
Author(s):  
Rintaro Kondo ◽  
Yu Tanaka ◽  
Hiroto Katayama ◽  
Koki Homma ◽  
Tatsuhiko Shiraiwa

2021 ◽  
Vol 13 (5) ◽  
pp. 954
Author(s):  
Abhilash K. Chandel ◽  
Lav R. Khot ◽  
Behnaz Molaei ◽  
R. Troy Peters ◽  
Claudio O. Stöckle ◽  
...  

Site-specific irrigation management for perennial crops such as grape requires water use assessments at high spatiotemporal resolution. In this study, small unmanned-aerial-system (UAS)-based imaging was used with a modified mapping evapotranspiration at high resolution with internalized calibration (METRIC) energy balance model to map water use (UASM-ET approach) of a commercial, surface, and direct-root-zone (DRZ) drip-irrigated vineyard. Four irrigation treatments, 100%, 80%, 60%, and 40%, of commercial rate (CR) were also applied, with the CR estimated using soil moisture data and a non-stressed average crop coefficient of 0.5. Fourteen campaigns were conducted in the 2018 and 2019 seasons to collect multispectral (ground sampling distance (GSD): 7 cm/pixel) and thermal imaging (GSD: 13 cm/pixel) data. Six of those campaigns were near Landsat 7/8 satellite overpass of the field site. Weather inputs were obtained from a nearby WSU-AgWeatherNet station (1 km). First, UASM-ET estimates were compared to those derived from soil water balance (SWB) and conventional Landsat-METRIC (LM) approaches. Overall, UASM-ET (2.70 ± 1.03 mm day−1 [mean ± std. dev.]) was higher than SWB-ET (1.80 ± 0.98 mm day−1). However, both estimates had a significant linear correlation (r = 0.64–0.81, p < 0.01). For the days of satellite overpass, UASM-ET was statistically similar to LM-ET, with mean absolute normalized ET departures (ETd,MAN) of 4.30% and a mean r of 0.83 (p < 0.01). The study also extracted spatial canopy transpiration (UASM-T) maps by segmenting the soil background from the UASM-ET, which had strong correlation with the estimates derived by the standard basal crop coefficient approach (Td,MAN = 14%, r = 0.95, p < 0.01). The UASM-T maps were then used to quantify water use differences in the DRZ-irrigated grapevines. Canopy transpiration (T) was statistically significant among the irrigation treatments and was highest for grapevines irrigated at 100% or 80% of the CR, followed by 60% and 40% of the CR (p < 0.01). Reference T fraction (TrF) curves established from the UASM-T maps showed a notable effect of irrigation treatment rates. The total water use of grapevines estimated using interpolated TrF curves was highest for treatments of 100% (425 and 320 mm for the 2018 and 2019 seasons, respectively), followed by 80% (420 and 317 mm), 60% (391 and 318 mm), and 40% (370 and 304 mm) of the CR. Such estimates were within 5% to 11% of the SWB-based water use calculations. The UASM-T-estimated water use was not the same as the actual amount of water applied in the two seasons, probably because DRZ-irrigated vines might have developed deeper or lateral roots to fulfill water requirements outside the irrigated soil volume. Overall, results highlight the usefulness of high-resolution imagery toward site-specific water use management of grapevines.


2021 ◽  
Author(s):  
David Lapola ◽  
Gilvan Sampaio ◽  
Marília Shimizu ◽  
Carlos Guimarães-Júnior ◽  
Felipe Alexandre ◽  
...  

&lt;p&gt;Amazon region&amp;#8217;s climate is particularly sensitive to surface processes and properties such as heat fluxes and vegetation coverage. Rainfall is a key expression of such land surface-atmosphere interactions in the region due to its strong dependence on forest transpiration. While a large number of past studies have shown the impacts of large-scale deforestation on annual rainfall, studies on the isolated effects of elevated atmospheric CO&lt;sub&gt;2&lt;/sub&gt; concentration (eCO&lt;sub&gt;2&lt;/sub&gt;) on plant physiology (i.e. the &amp;#946; effect), for example on canopy transpiration and rainfall, are scarcer. Here we make a systematic comparison of the plant physiological effects of eCO&lt;sub&gt;2&lt;/sub&gt; and deforestation on Amazon rainfall. We use the CPTEC-Brazilian Atmospheric Model (BAM) with dynamic vegetation under a 1.5xCO&lt;sub&gt;2&lt;/sub&gt; and a 100% substitution of the forest by pasture grassland, with all other conditions held similar between the two scenarios. We find that both scenarios result in equivalent average annual rainfall reductions (Physiology: -252 mm,-12%; Deforestation: -292 mm, -13%) that are well above observed Amazon rainfall interannual variability of 5.1%. Rainfall decrease in the two scenarios are caused by a reduction of approximately 20% of canopy transpiration, but for different reasons: eCO&lt;sub&gt;2&lt;/sub&gt;-driven reduction of stomatal conductance in the Physiology run; decreased leaf area index of pasture (-66%) and its dry-season lower surface vegetation coverage in the Deforestation run. Walker circulation is strengthened in the two scenarios (with enhanced convection over the Andes and a weak subsidence branch over east Amazon) but, again, through different mechanisms: enhanced west winds from the Pacific and reduced easterlies entering the basin in Physiology, and strongly increased easterlies in Deforestation. Although our results for the Deforestation scenario are in agreement with previous observational and modelling studies, the lack of direct field-based ecosystem-level experimental evidence on the effect of eCO&lt;sub&gt;2&lt;/sub&gt; in moisture fluxes of tropical forests confers a substantial level of uncertainty to this and any other projections on the physiological effect of eCO&lt;sub&gt;2&lt;/sub&gt; on Amazon rainfall. Furthermore, our results denote the incurred responsibilities of both Amazonian and non- Amazonian countries to mitigate potential future climatic change and its impacts in the region driven either by local deforestation (to be tackled by Amazonian countries) or global CO&lt;sub&gt;2&lt;/sub&gt; emissions (to be handled by all countries).&lt;/p&gt;


2021 ◽  
Author(s):  
Thuy Huu Nguyen ◽  
Matthias Langensiepen ◽  
Thomas Gaiser ◽  
Heidi Webber ◽  
Hella Ahrends ◽  
...  

&lt;p&gt;Drought is one of the most detrimental factors limiting crop growth and production of important staple crops such as winter wheat and maize. For both crops, stomatal regulation and change of canopy structure responses to water stress can be observed. A substantial range of stomatal behavior in regulating water loss was recently reported while the crop growth and morphological responses to drought stress depend on the intensity and duration of the imposed stress. Insights into the responses from leaf to the canopy are important for crop modeling and soil-vegetation-atmosphere models (SVAT). Stomatal responses and effects of soil water deficit on the dynamic change of canopy photosynthesis and transpiration, and seasonal crop growth of winter wheat and maize are investigated based on data collected from field-grown conditions with varying soil moisture treatments (sheltered, rainfed, irrigated) in 2016, 2017, and 2018. A reduction of leaf net photosynthesis (An), stomatal conductance (Gs), transpiration (E), and leaf water potential (LWP) was observed in the sheltered plot as compared to the rainfed and irrigated plots in winter wheat in 2016, indicating anisohydric stomatal responses. Maize showed seasonal isohydric behaviour with the minimum LWP from -1.5 to -2 MPa in 2017 and -2 to -2.7 MPa in the extremely hot and dry year in 2018. Crop growth (biomass, leaf area index, and yield) was substantially reduced under drought conditions, particularly for maize in 2018. Leaf water use efficiency (An/E) and crop WUE (total dry biomass/canopy transpiration) were not significantly different among treatments in both crops. The reduction of tiller number (in winter wheat) and leaf-rolling and plant size (in maize) resulted in a reduction of canopy transpiration, assimilation rate, and thus biomass. The seasonal isohydry in maize and the seasonal variability of LWP in winter wheat suggest a possibility to use the same critical LWP thresholds for maize and wheat to simulate the stomatal control in process-based crop and SVAT models. The canopy response such as dynamically reducing leaf area under water stress adds complexity in simulating gas exchange and crop growth rate that needs adequate consideration in the current modeling approaches.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document