scholarly journals Sedimentological and glaciotectonic interpretation of georadar data from the margin of the Vig ice-push ridge, NW Sjælland, Denmark

Author(s):  
Cecilie Skovsø Andersen ◽  
Peter Roll Jakobsen

Glaciotectonic deformations often result in a high degree of variability, including glaciotectonic and sedimentary variability. Redeposition of sediments during deformation increases the variability. Ground-penetrating radar (GPR) has proven to be a good method to determine sedimentary structures in glaciofluvial deposits (Olsen & Andreasen 1994; Van Overmeeren 1998) as well as glaciotectonic structures (Busby & Merrit 1999; Overgaard & Jakobsen 2001). Reflection facies analysis (radar facies) is a useful tool in the characterisation and interpretation of deformed sediments (Van Overmeeren 1998; Jakobsen & Overgaard 2002; Lerche et al. 2014). A GPR survey was carried out at Jyderup Skov in Odsherred in north-west Sjælland (Fig. 1). The presence of parallel ridges in the area indicates glaciotectonic deformation. The aim of the GPR study was to map the interior of the ridge complex and to interpret the genesis of the ridges.

2016 ◽  
Vol 46 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Larissa Natsumi Tamura ◽  
Renato Paes de Almeida ◽  
Fabio Taioli ◽  
André Marconato ◽  
Liliane Janikian

ABSTRACT: One key factor for the advance in the study of fluvial deposits is the application of geophysical methods, being the Ground Penetrating Radar one of special value. Although applied to active rivers, the method is not extensively tested on the rock record, bearing interest for hydrocarbon reservoir analogue models. The São Sebastião and Marizal formations were the subject of previous studies, which made possible the comparison of Ground Penetrating Radar survey to previous stratigraphic studies in order to identify the best combination of resolution, penetration and antenna frequency for the studied subject. Eight radar facies were identified, being six of them related to fluvial sedimentary environments, one related to eolian sedimentary environment and one radar facies interpreted as coastal sedimentary environment. The Ground Penetrating Radar data showed compatibility to sedimentary structures in the outcrops, like planar and trough cross-stratified beds. It is noted that the obtained resolution was efficient in the identification of structures up to 0.3 m using a 100 MHz antenna. In this way, the Ground Penetrating Radar survey in outcrops bears great potential for further works on fluvial depositional architecture.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1142-1153 ◽  
Author(s):  
Paulette Tercier ◽  
Rosemary Knight ◽  
Harry Jol

We have used geostatistical analysis of radar reflections to quantify the correlation structures found in 2-D ground‐penetrating radar (GPR) images. We find that the experimental semivariogram, the product of the geostatistical analysis of the GPR data, is well‐defined and can be modeled using standard geostatistical models to obtain an estimate of the range or correlation length, and the maximum correlation direction, in the 2-D GPR image. When we compare the results from geostatistical analysis of GPR data from selected deltaic and barrier‐spit depositional environments we find different correlation structures in GPR images from different depositional environments. GPR images from braid deltas have near‐horizontal correlation directions and correlation lengths on the order of a few meters. In contrast, the GPR image of a fan‐foreset delta has a very long (>24 m) correlation length and a maximum correlation direction plunging 20°. In the GPR images from barrier spits, we find maximum correlation directions that are horizontal or plunging a few degrees. The correlation lengths range from 7 to 43 m, depending on the orientation of the GPR image relative to spit end growth, and on the specific radar facies that is analyzed.


2007 ◽  
Vol 86 (1) ◽  
pp. 55-61 ◽  
Author(s):  
M.A.J. Bakker ◽  
D. Maljers ◽  
H.J.T. Weerts

AbstractManagement of the Dutch embanked floodplains is of crucial interest in the light of a likely increase of extreme floods. One of the issues is a gradual decrease of floodwater accommodation space as a result of overbank deposition of mud and sand during floods. To address this issue, sediment deposits of an undisturbed embanked floodplain near Winssen along the river Waal were studied using ground-penetrating radar (GPR). A number of radar facies units were recognized. Boreholes were used to relate radar facies units to sedimentary facies and to determine radar velocity. The GPR groundwave is affected by differences in moisture and texture of the top layer and probably interferes with the first subsurface reflector. The architectural elements recognized in the GPR transects confirm earlier reported insights on human-influenced river behaviour. This is testified in the development of sand bars during flood regimes that are probably more widespread than previously established.


2021 ◽  
Vol 11 (23) ◽  
pp. 11260
Author(s):  
Adriano Ribolini ◽  
Duccio Bertoni ◽  
Monica Bini ◽  
Giovanni Sarti

In this study we aimed to gain insights into dune formation and evolution from select coastal tracts of Northern Tuscany by inspecting their internal sedimentary architecture with Ground-Penetrating Radar (GPR) analysis. Erosion, equilibrium and accretion characterize the selected coastal tracts, and this analysis remarks on some GPR features consistently associated with specific coastal evolution states. A standard sequence of data processing made it possible to trace several radar surfaces and reflectors in the GPR profile, eventually interpreted in terms of depositional processes and erosive events. The stable or currently accreting coastal sectors show radar features compatible with a general beach progradation process, punctuated by berm formation in the general context of a positive sedimentary budget. Additionally, the radar facies distribution locally supports a mechanism of dune nucleation on an abandoned berm. Conversely, the GPR profile of the coastal sector today affected by erosion shows how a negative sedimentary budget inhibited coastal progradation and favored destructive events. These events interacted also with the active dunes, as demonstrated by the overlapping of wave run-up and aeolian radar facies. GPR prospections were effective at delineating the recent/ongoing coastal sedimentary budget by identifying radar features linked to construction/destruction phenomena in the backshore, and to dune nucleation/evolution.


Sign in / Sign up

Export Citation Format

Share Document