scholarly journals Flow Velocity Simulation of Wind Turbines by Computational Fluid Dynamics (CFD)

2021 ◽  
Vol 8 (02) ◽  
pp. 73-78
Author(s):  
Hammad ur Rahman ◽  
◽  
Syed Faisal Shah ◽  
Abdullah Jamshaid ◽  
Muhammad Usama ◽  
...  
2018 ◽  
Vol 3 (2) ◽  
pp. 713-728 ◽  
Author(s):  
Levin Klein ◽  
Jonas Gude ◽  
Florian Wenz ◽  
Thorsten Lutz ◽  
Ewald Krämer

Abstract. The low-frequency emissions from a generic 5 MW wind turbine are investigated numerically. In order to regard airborne noise and structure-borne noise simultaneously, a process chain is developed. It considers fluid–structure coupling (FSC) of a computational fluid dynamics (CFD) solver and a multi-body simulations (MBSs) solver as well as a Ffowcs-Williams–Hawkings (FW-H) acoustic solver. The approach is applied to a generic 5 MW turbine to get more insight into the sources and mechanisms of low-frequency emissions from wind turbines. For this purpose simulations with increasing complexity in terms of considered components in the CFD model, degrees of freedom in the structural model and inflow in the CFD model are conducted. Consistent with the literature, it is found that aeroacoustic low-frequency emission is dominated by the blade-passing frequency harmonics. In the spectra of the tower base loads, which excite seismic emission, the structural eigenfrequencies become more prominent with increasing complexity of the model. The main source of low-frequency aeroacoustic emissions is the blade–tower interaction, and the contribution of the tower as an acoustic emitter is stronger than the contribution of the rotor. Aerodynamic tower loads also significantly contribute to the external excitation acting on the structure of the wind turbine.


2018 ◽  
Vol 154 ◽  
pp. 01111
Author(s):  
Y. Fredrika Littik ◽  
Y. Heru Irawan ◽  
M. Agung Bramantya

Wind turbines model in this paper developed from horizontal axis wind turbine propeller with single rotor (HAWT). This research aims to investigating the influence of front rotor diameter variation (D1) with rear rotor (D2) to the angular velocity optimal (ω) and tip speed ratio (TSR) on counter rotating wind turbines (CRWT). The method used transient 3D simulation with computational fluid dynamics (CFD) to perform the aerodynamics characteristic of rotor wind turbines. The counter rotating wind turbines (CRWT) is designed with front rotor diameter of 0.23 m and rear rotor diameter of 0.40 m. In this research, the wind velocity is 4.2 m/s and variation ratio between front rotor and rear rotor (D1/D2) are 0.65; 0.80; 1.20; 1.40; and 1.60 with axial distance (Z/D2) 0.20 m. The result of this research indicated that the variation diameter on front rotor influence the aerodynamics performance of counter rotating wind turbines.


2001 ◽  
Vol 43 (8) ◽  
pp. 167-173 ◽  
Author(s):  
J. Hague ◽  
C. T. Ta ◽  
M. J. Biggs ◽  
J. A. Sattary

A laboratory model is used to measure the generic flow patterns in dissolved air flotation (DAF). The Perspex model used in this study allows the use of laser Doppler velocimetry (LDV), a non-invasive, high-resolution (±2 mm s−1) laser technique of flow velocity measurement. Measurement of flow velocity in the single-phase situation was first carried out. Air-saturated water was then supplied to the tank and measurements of bubble velocity in the two-phase system were made. Vertical flow re-circulation was observed in the flotation zone. In the bottom of the flotation zone (near the riser) secondary flow re-circulation was observed, but only in the two-phase system. Another phenomenon was the apparent movement of flow across the tank width, which may be due to lateral dispersion of the bubble cloud. Data from preliminary computational fluid dynamics (CFD) models were compared against this measured data in the case of the single-phase system. The CFD model incorporating a k-e model of turbulence was found to give closer agreement with the measured data than the corresponding laminar flow model. The measured velocity data will be used to verify two-phase computational fluid dynamics (CFD) models of DAF.


Sign in / Sign up

Export Citation Format

Share Document